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OPTIMAL LARGE EDDY SIMULATION OF TURBULENCE
Final Report for Contract F49620-01-1-0181

R. D. Moser, S. Balachandar and R. J. Adrian
Department of Theoretical and Applied Mechanics
University of Illinois, Urbana-Champaign

1 Motivation and Objectives

One of the most promising techniques for the prediction of turbulent flows is that of Large Eddy
Simulation (LES), in which an under-resolved representation of the turbulence is simulated numer-
ically by modeling the effects of the unresolved small-scales on the simulation. Such simulations
have been applied in several flows with reasonable success. However, there are several outstand-
ing problems that need to be addressed before LES can fulfill its promise as a tool for turbulence
prediction in engineering flows. The most serious problems limiting the usefulness of LES is the
representation of turbulence near walls and other strong inhomogeneities and the dependence of
models on the filter and/or numerical discretization. Also important are the treatment of inhomo-
geneous filters and the lack of understanding of the modeling errors and their impact.

The optimal LES formulation [9, 10] provides a rigorous framework in which to addressv these
issues and to develop and analyze LES models and simulations. The objective of this research is to
develop new LES modeling techniques to address the difficulties cited above by using the optimal

LES formulation.

2 Background & Approach

The starting point for the development of LES is the definition of a spatial filter *, which can be
applied to the Navier-stokes equations to obtain an equation for the filtered velocity ;:
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Where M; is the sub-grid model (force) term, which includes the divergence of the sub-grid stress
as well as terms that arise when the filter does not commute with differentiation. The problem in
LES of course is to model M;. A very important result of our research [9] is that an LES w will
match the one-time statistics of filtered turbulence 4 if and only if the model m;(w) of M; is given
by

mi(w) = (Mi(u)|a = w) @)



This model also minimizes the difference between M; and m; (in the mean-square sense), and so
this model has all the properties that one could ask of a sub-grid model. We therefore call it the
ideal sub-grid model.

Unfortunately, the conditional average in (2) cannot practically be determined, since the conditions
are that the entire filtered velocity field match the entire LES field. However, it can be estimated
using stochastic estimation [2] which is a well-established technique for estimating conditional
averages. The result is a class of estimation based LES models as first proposed by Adrian [1]
To perform stochastic estimation one requires large quantities of two-point correlation data. For
example, in linear estimation one needs (&;(x')fx(x")) and (M;(x)dx(x"))-

To obtain the required data, we resort to direct numerical simulation (DNS), which is limited to low
Reynolds numbers, and experimental velocity field measurements, which are currently limited to
two-dimensional measurements. By using reliable empirical data for the required correlations, the
optimal modeling approach can be developed, tested and validated in the absence of uncertainties
associated with modeling the correlations theoretically. Once the formulations has been developed
and validated, truly predictive, generally applicable models can be developed based on theoretical
approximations to the required correlations.

3 Supported Research

To pursue the objectives defined above, a number of research activities were pursued under the
current grant. These are described briefly below and in more detail in the following subsections,
and the referenced publications.

1. Correlation Data Acquisition: To develop and test the optimal LES formulation, exten-
sive multi-point correlation information was needed. Since the wall-modeling problem is
of prime importance, we concentrate on near-wall correlations from turbulent channel flow.
Data was generated both experimentally, using a novel PIV technique [6], and numerically,
using direct numerical simulation (DNS).[8] This data is also being used to formulate and
check theoretical descriptions of the two-point correlation (see item 5 below).

2. Development and Testing of Optimal LES Formulations: It had previously been shown
that optimal LES based on Fourier cut-off filters performed very well. But, Fourier cutoff
filters are not practical for use in complex geometries. So, an optimal LES formulation
based on finite volume filters was developed and tested (see [16] and Appendix A). Further,
for several reasons, it would be advantageous to develop optimal models based on finite
difference discretizations, rather than finite volume, and such formulations have also been
developed and tested.

3. Filtered Wall Treatment: One of the difficulties associated with wall-bounded flows is that
if one sharply defines the wall and the no-slip boundary condition, it requires that the filter be
extremely inhomogeneous near the wall. This causes a number of problems. Alternatively,
the boundary can itself be filtered, producing the LES analog of an embedded boundary
method. Wall models for this approach have been developed using optimization techniques.




4. Theoretical Optimal LES for Isotropic Turbulence: To eliminate the need for extensive
empirical input to optimal modeling, the required correlations need to be determined theoret-
ically. Using a combination of Kolmogorov scaling, small-scale isotropy, the quasi-normal
approximation and a dynamic approach, theoretical optimal LES models for the finite vol-
ume formulation were developed. The resulting models are valid provided the Reynolds
number is sufficiently large, and small-scale isotropy is a valid approximation. These mod-
els have also been tested.

5. Theoretical Correlations for Wall-Bounded Turbulence: Near walls, the assumption of
small-scale isotropy and filter widths in the inertial range are invalid. A representation for
the inhomogeneity and anisotropy of the multi-point correlations in wall-bounded turbulence
(particularly in the log-layer) is needed for use in the development of optimal models. Such
a representation is being pursued based on the developments by Procaccia’s group[4, 3, 11],
the similarity forms of Oberlack,[13] consistency with the Navier-Stokes equations and the
quasi-normal approximation. Further, the DNS and experimental data described in (1) are
being used for guidance.

3.1 Correlation Data Acquisition

To acquire the correlation data needed to address the modeling of wall-bounded turbulence, a
new DNS of turbulent channel flow, and a laboratory experiment on turbulent channel flow were

conducted.

3.1.1 Channel Flow DNS

A turbulent channel flow at Re, = 940 in a very large spatial domain (L, = 8nh, L, = 3.257h,
where h is the channel half-width) was conducted. The large spatial domain allows more reliable
statistics to be gathered, and facilitates the study of large length-scale phenomena known to be
present in the near-wall region. Further, this large-domain channel provides a valuable validation
target for wall-bounded turbulence LES. In particular the capture of long wavelength phenomena

by the LES can be assessed.

The simulations were performed at the San Diego Supercomputer facility and at the DOD HPC fa-
cility at NAVO. The simulation produced a library of approximately 100 DNS fields which are cur-
rently being post-processed for a number of purposes, including the correlation representation dis-
cussed in section 3.5. Furthermore the data is in the process of being made available to researchers
in the turbulence community through the website http://davinci. tam.uiuc.edu. Fi-
nally, the first paper published on the data has appeared [8].

3.1.2 Channel Flow Experiments

To support the development of optimal LES models, detailed PIV measurements of turbulent chan-
nel flow were made. In addition to standard velocity measurements, which are used to determine




the multi-point velocity correlations required in the formulation velocity time-derivative measure-
ments were made using a novel PIV technique, and correlations of the time-derivative were com-
puted also to support modeling of LES dynamics. The experimental technique is described briefly
below, and in more detail in [6].

Measurements of instantaneous time- and bulk-convective-derivative fields have been made over
a broad range of Reynolds numbers to support the development of optimal LES models. A two-
CCD-camera PIV arrangement was designed to acquire large ensembles of time-resolved velocity
data at moderate-to-high Reynolds numbers in the streamwise—wall-normal plane of fully devel-
oped turbulent channel flow. The cameras are focused on the same field of view (temporal deriva-
tive) or shifted in the streamwise direction (bulk convective derivative), and the acquisition of the
second is delayed in time by 7 (typically a fraction of the Kolmogorov time scale, t;), to allow the
computation of the associated time derivative. Polarization filtering is used to separate the particle
images viewed by each camera. Rigorous techniques have been developed to compensate for the
noise inherent in the PIV velocity measurements.

Recent effort has focused on the bulk convective derivative because comparison of the streamwise
spectra of du;/dt and Du;/Dt indicates that, at all scales, the temporal derivative of velocity
is dominated by bulk convection, not evolution. These convection effects mask the underlying
dynamics of interest in optimal LES development.

Reynolds-number scaling of the bulk convective derivative statistics has been assessed for both un-
filtered and filtered data. The intent of this analysis is to determine the most appropriate time scale
for achieving Reynolds-number similarity in the bulk convective derivative statistics. Figure 1(a)
shows the root-mean-square of Dyv/Dt (unfiltered) scaled with the friction velocity (u,) and the
outer time scale (t, = u,/h) as a function of wall-normal position (Dyv/Dt has the strongest
Reynolds number dependence). Near the wall, this scaling does not remove the strong Reynolds-
number dependence in the RMS, but further from the wall (y/h > 0.4), this scaling works well.
This is the best scaling found for this quantity. In figure 1(b) the RMS time derivative of the filtered
fields is shown (top-hat filter of width A = 0.2h). The strong Reynolds-number dependence noted
in the unfiltered profiles is now absent. Scaling of the two-point correlation functions of Dyu;/Dt
yields similar results: unfiltered correlations show Reynolds-number dependence when scaled with
t,, while filtering removes this dependence, yielding a consistent scaling of the correlations. It is
the time derivative of the filtered velocity that is of interest in LES, so the scalings based upon
t, are appropriate for the optimal LES formulation. This information will be used to develop a
comprehensive Reynolds-number-scaling framework for extending optimal formulations to higher
Reynolds numbers.

3.2 Development and Testing of Optimal LES Formulations

A finite volume formulation of optimal LES was developed previously [10], but had not been
tested. This formulations has been tested and refined. Also, it was recognized that a finite differ-
ence formulation of optimal LES would be advantageous, and this has also been developed and
tested, though more work on refinement remains to be done. These activities are discussed below.
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Figure 1: Scaling of Dyv/Dtgys profiles with u, and t,. (a) Unfiltered, (b) Filtered.
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Figure 2: Three-dimensional energy spectrum E(k), filtered DNS compared with optimal LES with
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3.2.1 Finite Volume Optimal LES

In the finite volume LES formulation of Langford [10], the “filter” is defined to be the average
over discrete volumes. As in a standard finite volume numerical discretization, the evolution of the
volume averaged velocity requires the evaluation of momentum fluxes through the boundaries of
each discrete volume. In the LES context, these cannot be estimate using standard finite volume
reconstruction techniques because the cell size (filter width) is not small compared to the smallest
scales over which the velocity varies (the Kolmogorov scale). In short, the velocity is not smooth
on the scale of the volumes. Instead, we use the optimal LES technique to estimate the fluxes.
Thus, the usual convergence considerations normally used to develop numerical methods are re-
placed with the requirement that the flux estimates be consistent with the statistical properties of
turbulence.

This finite volume LES formulation was tested in isotropic turbulence using DNS data to determine
the required correlations. The results are quite good as shown by the spectra plotted in figure 3.2.1.
It was found that a simple stencil in which two cells on either side of a face are used to estimate



the flux is adequate to yield very good results. It was also found that a staggered grid formulation
produces a much better LES. The details of this study are provided in [16], a preprint of which is
included as Appendix A.

3.2.2 Finite Difference Optimal LES

One issue which must always be addressed in LES is that it is generally not the filtered turbulence
that is of interest, but rather the real unfiltered turbulence. Thus, when interpreting LES results, it
is necessary to account for the missing small-scales. For example, the turbulent kinetic energy will
be missing the contribution from the unresolved small scales.

If one is interested in statistical correlations of the velocity, then an LES definition that preserves
the statistics of the velocity would be particularly useful, since it would avoid these difficulties.
One such LES filter definition is just a sampling of the turbulence on a grid of points. This is a
non-invertible linear transformation that can be used as an LES “filter,” though it does not have
the usual filter properties of eliminating small-scale fluctuations. Indeed, such a mapping can be
considered to exhibit aliasing of the small scales. None-the-less, the ability to preserve velocity
statistics in this formulation make it an attractive target for LES development.

The evolution equations for the point-sampled velocity are given by

ou; _ Ausu j+ , u; |
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where j is the index for the grid of points. Note that the terms on the right hand side all involve
spatial derivatives, which cannot be directly evaluated from the point sampled fields. Because
the grid spacing is assumed to be large compared to the smallest turbulence scale, the usual finite
difference approximations of the derivative are invalid. Instead, we use optimal LES modeling to
estimate these derivatives. This is very like the finite volume formulation, though we are estimating
derivatives in this case, rather than fluxes. '

There were several subtleties that needed to be addressed in developing the optimal estimates of
the derivatives. First among these is that the nonlinear term is energy conserving in this formu-
lation. All energy dissipation occurs through the viscous term. It was necessary for stability and
robustness that the estimated nonlinear term be constrained to be energy conserving as well. This
was easily accommodated as part of the estimation procedure. Another issue is the enforcement
of continuity. The presence of significant aliasing in the LES filter definition makes continuity a
very weak constraint on the point sampled velocity. Thus, imposing a continuity constraint on the
sampled velocity is apparently not valid. But the pressure must still be determined. For our prelim-
inary studies, an approximate continuity constraint was applied and the pressure was determined
from this constraint. Better approaches are being explored.

A preliminary result for the spectrum of the sampled velocity is shown in figure 3, along with
that for the sampled DNS of isotropic turbulence. The results are not nearly as impressive as the
finite volume results discussed above, but at least part of this can be attributed to the treatment of
continuity. The finite difference optimal LES approach is continuing to be refined.
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Figure 3: Three dimensional energy spectrum in forced isotropic turbulence with a point-sampled
LES filter. Shown are filtered DNS and LES results.

3.3 Filtered Wall Treatment

It was pointed out by Das & Moser[7] that the wall of a wall bounded flow could be filtered to
avoid the use of strongly inhomogeneous filters near the wall. In this approach, a homogeneous
(or nearly homogeneous) filter is applied to an extended domain including a region exterior to the
wall in which u = 0. When such a filter is applied to the Navier-Stokes equations (extended in to
the interior), the result is

%4.{2% = _@_‘_ 1 82’&" +b +3Tij
6t J@xj -

dz; ' Redz;0r; = = 0O,
where b; is the boundary term arising from the filtering of the boundary and 7;; is the usual subgrid
stress term. The boundary term is expressed as

bi(x) = /BR 0:;(x)n;G(x — x') dx’

where o is the stress at the boundary, including pressure and viscous stress, OR is the boundary
of the fluid region R and n; is the unit normal to the boundary. To determine the stresses, we
note that the velocities should remain zero exterior to the flow domain. The stresses can thus be
determined to minimize the velocities in the exterior. In particular, we minimize the cost function:

- (2
E=[|u]+ I%i' dy, where a is a numerical constant selected to be of order At?.

)

To test this approach, a filtered boundary simulation of the turbulence in a channel at Re, = 180
was performed, with no filtering in the horizontal directions, and a Fourier cutoff filter with k. =
371/6 in the wall-normal direction (Ay* = 1.5). This is a sufficiently fine filter that the primary
effect is to smear the boundaries, so it could be considered to be a filtered-boundary DNS. The
results of this simulation are compared to those of [12] in figure 4, and the agreement is excellent.

These results indicate that the filtering and wall-modeling approach are viable, at least in the con-
text of a well resolved simulation. However, the real application for this approach is in LES, where
the filter width will be large in wall units. In this case, the wall model must represent signifi-
cantly more of the near-wall physics, particularly the near-wall production process. To evaluate

7
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Fourier cutoff filters in a spatial directions, thus the walls are also filtered. Shown are the DNS
data, the filtered DNS and the LES. Filter widths were: A} = 116, A, = 37" and A} = 58.




the ability of the model described above to represent the near-wall process, an channel flow LES
was formulated using a Fourier cutoff filter in the wall normal direction, in addition to the ho-
mogeneous directions. In plus units the filter widths in the streamwise wall-normal and spanwise
directions were A} = 116, A, = 37+ and A} = 58. The Reynolds number was Re, = 590,
the same case investigated by Voelker et al[15]. An optimal LES model based on the DNS data
of [12] was used for the interior, with the same formulation suggested by Voelker et al. The wall
treatment discussed above was also used. The results are shown in figure 5. The mean velocity is in
only fair agreement with the filtered DNS data, and the rms streamwise velocity is systematically
over-predicted, particularly near the wall.

It appears that these shortcomings arise because the wall model is optimized to minimize “leakage”
of energy and momentum into the exterior, rather than the transport of energy (or Reynolds stress)
into the fluid domain, as suggested by the results of Voelker. Both these requirements are important,
so a hybrid approach in which both are minimized simultaneously is being developed.

3.4 Theoretical Optimal LES for Isotropic Turbulence

We seck to develop the correlations required to do finite volume LES analytically based on the
assumption of a Kolmogorov inertial range and standard two-point modeling assumptions, partic-
ularly the quasi-normal approximation. The finite volume optimal LES is selected as a target here
because the goal is a generally applicable modeling approach, which makes spectral representa-
tions and filters inappropriate.

In the finite volume optimal LES formalism, we need to estimate the integrated fluxes through a
surface in terms of the velocities averaged over discrete volumes, and these estimates must be at
least quadratic to represent the Navier-Stokes-like terms of the LES. Thus, our estimate is of the
form:

u; (X)us(x) dx _ ZLij(s,v)/uj(x) dx 5)
+v§2Qijk(s,'Ul,'U2) /vl u;(x!) dx* /vzuk(x2) dx? (6)

where s is a surface (volume face) and v a volume, and u, is the (outward directed) component of
u normal to the surface s. To determine the estimation coefficients L and (), we solve a system of
equations in terms of the integrated multi-point correlations:

Illi(vlvs) = ZLij(Sv 'U)Ilrzj(v,"v) + Z Qijk(s’ 'Ul)vQ)Ilajk(vI)vl,'U2) ¢

v1,v2

Ipi(v},v5,8) = ZLij(srv)Izamj(Ui,vﬁ;v)‘i'ZQijk(S,vl,Uz)Iﬁnjk(vi,Ué,vl,vz) )]

V1,02

where the integrated correlations I to I® are given by
Ii(v',s) = / , / (g (% Yu; (x us(x)) dx dx’ 9)
BW,v) = [ [(b)ux)dcdx (10)
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Il“mij(v'l,vg,s) = // /, /(ul(xll)um(x2l)ui(x)us(x))dxdxzfdxl’ (12)
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Thus, there are three correlation tensors needed to determine the estimation coefficients:

Ry(r') = (wi(x)u;(x)) (14)
Tye(r',r%) = (w(x)u;(x")ur(x?)) (15)
Fya(c', 0%, r%) = (wa(x)u (x ur (x*)u(x%)), (16)

where we have used homogeneity to express the dependence of the correlation on location differ-
ences, r' = X — X",

3.4.1 Correlations

~ To determine these correlations, we can make use of the isotropy of the tensors, and we will assume
that all the spatial separations are small enough to be in the Kolmogorov inertial range of an infinite
Reynolds number isotropic turbulence. From this assumption, we can determine the second and
third-order longitudinal structure functions:

52(r') = {(uy(x) —wy(x"))?) = Cre”(r)*? (17
S3(Y) = ((uy(x) ~ (<)) = —ger’ a®)

where ¢ = |r| is the magnitude of the separation vector, u is the velocity component in the
direction of the separation vector and C) is the Kolmogorov constant.

The structure function relations along with isotropy allow us to determine two useful correlations.
First, the most general isotropic two-point correlation R;; that is consistent with (17) is given by

Ri;(r') = u?6;; + %62/3(T1)"4/3(7‘i17‘} — 4(r")?6;5) (19)
Similarly, S3 is related to the third-order two-point correlation:
biji(r?) = (wi(x)us(x)ur(x")) = T (0,17). (20)
and the most general isotropic form consistent with (18) and continuity is:
bijr(r!) = 1% ((Sijr,lc - g(dikr} + 5jkri1)) (21)

This is precisely the correlation needed for the integral I* (9). However, the more general third-
order three-point correlation is needed for I* (11). And the fourth order four-point correlation is

10
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Figure 6: Three-dimensional energy spectrum E(k), filtered DNS compared with Optimal LES
with 4-cell stencils, developed from theory and from DNS statistical data.

needed for I (12) and I° (13). Further modeling assumptions will be required. Particularly, the
quasi-normal approximation can be used to determine Fj;x; in terms of R;;. The result is:

Fijkl(rl, r?, r3) = Rij(rl)Rk[(ra -+ R;k(r2)le(r3 -+ Ril(r3)Rjk(r2 -rl). (22

While it is commonly used, the quasi-normal approximation has had mixed success in turbulence
modeling. Particularly, when used as a model to close the third-order spectrum equations, the
quasi-normal approximation leads to an unrealizable energy spectrum. The reason is that the small
errors in the quasi-normal approximation accumulate, and realizability of the energy spectrum is
sensitive. Fortunately, in the current case, there is no analog to the realizability constraint. Our
model is for the filtered fluctuating velocity equation, which can be used to determine the spectrum
directly in a way that is inherently realizable (because it is computed from the velocities). Whether
the errors in the quasi-normal approximation are significant for the current purposes can only be
determined by testing the resulting models.

The third-order three-point correlation is problematic. It cannot be determined theoretically from
the considerations discussed above. Instead we observe that I3 (as well as 12 and I°) can be recast
as a correlation among the LES state variable (volume averaged velocities). Thus it is possible to
determine I2, I® and I° from a running LES. This allows for the possibility that these quantities
can be determined dynamically as a simulation is running. This is the approach that is currently
being pursued for I3.

While this approach is being refined, a test of the modeling approximations described above was
conducted by computing I® from DNS while using the models described above to determine the
remaining terms. The resulting model was tested in isotropic turbulence using the same case and
same filter size used in [16] (see Appendix A). The results are shown in figure 6, with comparison
to filtered DNS and to the DNS-based model discussed in [16]. The results with this model are not
quite as good as the DNS-based model, but there is a small inconsistency associated with using the
DNS data for I3, and the high-Reynolds number theory for the rest. This may well be responsible
for the this somewhat degraded performance. None-the-less, the results suggest that the approach
to modeling the correlations discussed here is viable.

11
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and (right) spanwise separations (along horizontal coordinate) and wall normal coordinate (vertical
coordinate). The axes are scaled by wall units.

3.5 Theoretical Correlations for Wall-Bounded Turbulence

The modeling approaches described in section 3.4 are clearly not applicable to wall-bounded turbu-
lence. The turbulence cannot be considered isotropic or homogeneous, and the assumption of filter
widths in the inertial range are clearly not justified. However, we do have a number of tools avail-
able for modeling the correlations in wall bounded flows. In particular, there is the representation
theory developed by Procaccia’s group [4, 3, 11] to represent anisotropy and the similarity theory
of Oberlack for the log-layer. Further the quasi-normal approximation may still be valid, and the
Navier-Stokes equations constrain the possible properties of the two-point third-order correlation.
Finally, it is still the case the 12, I® and I° are correlations between the LES state variables, so they
are candidates to be determined dynamically.

To date, the application of the theory of Procaccia and of Oberlack as well as the quasi-normal ap-
proximation have been explored by appeal to DNS channel data. The results of these investigations
are given in the following subsections.

3.5.1 Applicability of the Quasi-Normal Approximation

To determine whether the quasi-normal approximation is applicable in the near-wall of a wall-
bounded flow, it was directly tested in a turbulent channel flow using DNS data at Re, = 590.
Various restrictions of the full four-point fourth ranked tensor were computed directly from the
data and via the quasi-normal approximation and the second order correlations computed from
the DNS. The results suggested that the approximation is remarkably accurate except for a region
very near the wall (y* < 50). An example result is shown in figure 7. At high Re, the region
with y* < 50 will need to be treated as part of the boundary treatment discussed in section 3.3,
so the quasi-normal approximation appears to be valid where the interior models will need to be
formulated. Details of the test of the quasi-normal approximation are provided in [14], a preprint
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of which appears as Appendix B.

3.5.2 Procaccia and Oberlack Theory

The main objective of the study is to get a representation for the difference between the two
point velocity fluctuation correlation and the Reynolds stress AR,g (X, 1) = (ua(X)ug(x +r)) —
(uq(x)ug(x)) in the different regions of the turbulent channel flow. The particular representation

to be looked at is given by [4], and has the following form

qmaz(l)
ARyp (x,1) = Z Z 3" cam (x,7) BIF (£) (23)
=0 m=-1 g=1

Here, the basis tensors BY™ form an irreducible representation of the rotation group, implying
that applying a rotational transformation to a basis tensor gives back a linear combination of basis
tensors with the same [ indices. In the special case of homogeneous turbulence, it has been shown
by [4] that this quality of the basis tensors along with the isotropy of the governing equations of
the two point correlations implies that it is possible for the coefficients cgm (X, r) having the same
I to be proportional to 7¢¢). Based on experimental and theoretical evidence (e.g. [4], [11] ) that

£(1) increases with , it can be justified that B?™ with higher ! should have lesser importance as
the separation r goes down. This property is obviously useful, because it gives a clear hierarchy of
basis tensors for the representation of any two-point correlation tensor.

In the log-layer of the channel, [13] has shown that R, (X, r) depends on the similarity variable
r/y, where y is the distance from the channel wall. Thus, the two-point correlation at only one y
in the log-layer is required to get the representation in the whole log-layer.

Some of the objectives of this study are to calculate the components ¢y, (X, 7) of the basis tensors
and

e Verify whether it decreases in importance with {

e Find out the number of {’s up to which it needs to be retained

e Check if in the log-layer they depend only on r/y and if this self-similarity can be used to sim-
plify the representation

Properties of the full representation: The representation of the two point correlation containing
terms only up to ! = [,,,,, 1s given by
lmaz 1| Gmax(l)

ARG (1) =Y. 3 Y cum(x,7) B () (24)

=0 m=~1 g¢=1

The fractional error between AR(e=) and the exact AR is given by

T'ma:: (lmaz) — (lmuz) —_— 2
iner — \J (AR ARJAR AR) r2dr 25)

b (AR|AR) r2dr
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Variation of anisotropy with distance from wall
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Figure 8: Relative error in the representation of AR (left) as a function of truncation index { for
various y*, and (right) when truncated at [ = 0 (isotropic term) as a function of y*. The error is
measured in DNS of turbulent channel flow at Re, = 940.

With 7,4, /h varying from 0.05 near the wall to 0.2 at the center. The inner product between any
two tensors G and H is given by

27

(G(r) |H(r)) = / / G*op (7,0,0) Hop (1,0, §) sin 0d0ds (26)
0

0

The two-point correlations have been obtained for channel flow of Re, = 934. Figure 8(a) com-
pares the values of E'e= for various y* ranging from near wall to the center of the channel. Clearly,
for all points, a very good representation can be obtained for values of [0, = 4 while for [, = 2
we get a maximum error of close to 20%. The odd ! values do not contribute as much as the even !
values. Therefore if we include only the | = 0 and I = 2 components, then for homogeneous turbu-
lence we get 10 independent non-zero cg.» components, while for inhomogeneous turbulence we
get 19 independent non-zero ¢y, components. We can also see that the curves for 90 < y* < 180
collapse, due to the fact that the correlation is self-similar in the log-layer. Figure 8(b) shows the
value of E° for different y* values, i.e. the percentage error in the correlation if only the isotropic
part of the correlation were used for it’s representation. Clearly, even for y* values close to the
wall the isotropic part represents the majority of the correlation. Again, evidence of self-similarity
can be seen by flattening of the curve between 90 < y* < 180.

Self-similarity in the log-layer:

Now we try to verify the self-similarity hypothesis in the log-layer. Clearly, if Rop(y, r) depends

only on r/y then ¢y, (y,7) should depend on r/y. Figure 9(a) shows the curve cyo(y, ) plotted
against r/y for different y values in the log-layer. We can clearly see very good self-similarity in
this case. However, this is not seen in all the components, and a significant proportion of them
do not collapse on a single curve. An example of this is seen in figure 9(b) for ci20(y, 7). This
implies that the correlation can be separated into self-similar and non self-similar parts. It is not
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Figure 9: Angular expansion coefficients cg.,, for the indicated values of the indices. Coefficients
are plotted as functions of r/y, consistent with similarity scaling of Oberlack [13].

clear whether there is a unique decomposition which can actually separate these parts, since it is
not possible to define a unique non self-similar component. Instead, we look at some way to reduce
the size of the representation, such that for each ([, m) subspace we choose an optimal tensor and a
self similar scalar component which minimizes the global error between the reduced representation
and the two-point correlation across the log-layer. Thus, we look for a representation of the form

% (m) = Z a'™ (1) S5 (1) 27)
where 7 = r/y and
HOEDIF kx4 () (28)
q

Here f9'™ is a set of scalar constants and is one of the variables which need to be optimized, the
other being a/™(n). To formulate the optimization, we first get the orthonormal basis of B
within the (I, m) subspace using the gram-schmidt orthonormalization procedure. Therefore, we
get

B (7) = 3 him B () (29)
ql

so that <B’q’m | B"I'lm> = §4 . The exact representation is now given by

AR,p(x,1) = Zc’q’m(x r)B'qlm(r) 30)

qlm

We can redefine the optimal tensors S'™ as

Stm(@) = Y g% BIE™(7) (31)
q
with the constraint
Y gtmgtm =1 (32)
q
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in order to make sure that only a'™(n) contains information about the magnitude of the component.
We need to minimize the error between AR(x,r) and AR*(n) over the range of the log layer
7o < y < y;. This error is given by

)

1
/ / (AR(y,yn) — AR (n) | AR(y, yn) — AR%(n)) n°dndy (33)

Yo O

F = 1
Y1 — Y

Using the expansions given by equations (23) and (27) the inner product inside the integral is

given by a known functional of the coefficients {a"™ (1)}, {g?™} and {c?¥™(y,yn)}. The ?roblem

is solved using the method of Lagrange multipliers, by minimizing F' + 3 A\ (3 §%™g?™ — 1).
Im q

This reduces to solving for

0
F A - —qlm qlm __ I = 4
3ngm[ +§ ’ (zq:g g )} 0 (34)
a —qlm _glm
e [F+ 2 Mn(3 g g™ = 1)| =0 (35)
da'm Ilm q
The sets of {g?™} which satisfy the above equations are given by the eigenvalue problem
Z qu’lmgqllm = )‘lmgqlm (36)
ql
Here
1
Cagim = [ 1% (n) T (m)nPd (37)
0
and
)
Iqlm —_ c/qlm , d (38)
(n) — / (v, ym)dy

Yo

Where {c/?™(y,)} can be obtained from {c#™(y,r)} using (23), (29) and (30). Thus {g#™} is
given by the eigenvectors of (36), with the most os)timal set given by the eigenvector corresponding
to the maximum A;,,,. The most optimal set of {a"™(n)} is then given by

™ (n) = Y I (n)g™™ (39)
q

Table (1) shows the degree to which the self-similar representation matches the two-point correla-
tion in the log-layer. Fj shows the fraction of the correlation represented by the individual mode
and F3 is the fraction of correlation represented by the sum of the first ¢ modes. Clearly, the self-
similar representation is a very good approximation of the correlation across the log-layer. The
isotropic tensor itself forms the largest part of the correlation, while the I = 2 components come in
next. Therefore, a self-similar representation using just the ! = 0 and [ = 2 components should be
good enough, even though the region is highly inhomogeneous. Figure 10 shows the comparison
of the fully reconstructed self-similar representation with correlations in a higher Reynolds number
flow taken from experiments [6]. The self-similar representation gives a reasonable estimate of the
streamwise correlation across the log-layer.
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Figure 10: Comparison between the self-similar part of Ry (y, r) calculated from DNS with actual
correlations in channel flow with Re, = 2433 (Experimental data). (a) shows the self-similar
part of the correlation calculated from DNS, (b) & (c) show correlation taken from experiment for
y/h = 0.15 and y/h = 0.25, both in the log-layer. The correlations are in the x-y plane, and the
separations in the x and y directions have been normalized with respect to distance from the wall
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Table 1: The modes in the self-similar representation sorted according to decreasing order of im-
I3 el s |

QM OmE) (MSHOmE) (7))]2 =

portance. Fi = L=k and £y = =gy » where [[M(y, n)[l* =

%1

J [ (M|M) n*dndy

Yo 0
1 0 0 0815 0903
2 2 1 0066 0939
3 2 0 0045 0963
4 2 2 0024 0975
5 3 1 0014 0982
6 4 0 0012 0988
7 1 1 0007 0992
8 1 0 0003 0993
9 4 3 0002 0994
10 3 2 0001 0995
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Abstract

The feasibility of an optimal finite-volume large-eddy simulation (LES) model for isotropic tur-
bulence is evaluated. This modeling approach is based on the approximation of the ideal LES
by a stochastic estimate of the fluxes in a finite-volume representation of the Navier-Stokes equa-
tion. Stochastic estimation of the fluxes allows for the simultaneous treatment of Navier-Stokes,
discretization and subgrid effects, yielding a compact, yet accurate scheme for the large eddy sim-
ulation of isotropic turbulence. Both global and local models based on optimal finite-volume LES
are developed and used in a priori tests guiding the choice of stencil geometry and model inputs.
The most promising models in the a priori exams are tested in actual simulations (i.e. a posteri-
ori) and the results compared with those for filtered DNS and the dynamic Smagorinsky model.
The a posteriori performance of the optimal finite-volume LES models, evaluated by the eﬁergy
spectrum and third-order structure function, is superior to that of the dynamic Smagorinsky model
on a coarse grid. While applicability to other cases is currently limited by the dependence of the
present approach on direct numerical simulation (DNS) statistical data, research is underway to

remove this requirement.



I. INTRODUCTION

In large-eddy simulation (LES), one simulates turbulence by resolving only the large scales
while modeling the small ones. This approach is justified by the observation that the large
scales usually dominate the dynamics of the flow, whereas the small scales are important
only to the extent to which they affect the large scales. The small scales of turbulence are
believed to be more universal and, therefore, more amenable to modeling, which should
allow for a prediction method that can be used, with little change, in a wide range of flows.
For reviews of LES see Rogallo & Moin [1], Lesieur & Métais [2] and Meneveau & Katz [3].
Despite its great promise as a turbulence prediction technique, current LES practice suffers
from many shortcomings (e.g. near-wall modeling, and effect of numerical discretization
errors) which hamper the use of LES as a reliable engineering prediction tool. Several active
research efforts [4-9] are underway to improve LES modeling, and, in particular, optimal
LES models [10, 11] as those reported here are being pursued to address these issues.

Development of optimal LES has benefited from a careful reexamination of the formalism
underlying LES. Because of the continuous range of scales present in a high Reynolds number
turbulent flow, it is necessary to define with some precision the large scales to be simulated
and the small scales to be discarded in an LES. This is accomplished through spatial filtering.
Filtered quantities, denoted by 6, represent the large (or resolved) scales, and can be defined
through the operation of a filter kernel on the original variable. As an example, the filtered

velocity field 4; is defined through the filter kernel g (in general g could be a distribution)

operating on the velocity u;:
@) = [ 9@ @) () ds’ 1)

The small scales in the LES, e.g. u. = u; — 4;, are commonly called subgrid scales.
The standard LES practice is to apply the filter to the Navier-Stokes and continuity
equations, yielding the governing equations for the resolved scales:
o,
oz;

+C=0 2)

ou, _ oW _op 1 &Pm . ‘)
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where

0rij
Mi = = i 4
7 O (4)
Tij ="m —Uiﬁ} (5)

and C and C; are commutation terms that arise when the filter does not commute with
spatial differentiation. The term 7; is the subgrid stress term, which represents the effect
of the subgrid scales on the resolved scales.

Most current LES formulations use discretized versions of (2) and (3) as evolution equa-
tions, with the modeling effort focused on determining the correct representation of the
subgrid stress term 7;;. These subgrid stress models, such as the Smagorinsky [12], dynamic
[13], scale-similarity [6, 14], stretched vortex [5] and defiltering models [8, 15-17] have been
used to simulate a variety of turbulent flows, but are derived assuming that errors due to
numerical discretization of the remaining terms in the evolution equation are negligible.

The introduction of numerical discretization in LES raises both a fundamental and practi-
cal issue. The fundamental issue arises because continuous filters used in LES are commonly
invertible, or nearly so. For example, the Gaussian filter is formally invertible, and a top-hat
filter can be inverted with the addition of only boundary information. With invertible filters
and in the absence of numerical discretization, the filtered velocity can be evolved exactly by
inverse filtering, computing the terms in the Navier-Stokes equations, then filtering the re-
sult. However, numerical discretization actually eliminates critical small-scale information,
making this impossible, and thus it is the presence of numerical discretization that makes
LES modeling necessary in these cases. Because of this, it seems desirable that LES models
be formulated in the context of the numerical representation with which they will be used.

As a practical matter, the numerical discretization errors introduced by standard low-
order numerical schemes are of the same order as the LES model terms [18-20], leading to
solutions that are contaminated by numerical errors. Two different approaches are currently
used to avoid such large numerical errors: high-order discretization schemes (or spectral
methods) and/or grid refinement while keeping the filter width A constant. Both of these
approaches have been successfully applied to yield accurate LES solutions [21, 22|, but
their use is limited by practical considerations. The application of high-order methods is
usually difficult in complex geometries, while the cost of adequate grid refinement is generally

prohibitive. Since neither of these options is acceptable in complex turbulent flows, another
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approach seems necessary. In particular, if subgrid models could be formulated to account
for the numerical discretization, accurate low-cost LES would be possible.

In the development of optimal LES, the above considerations have led to an approach
in which the numerical discretization is considered to be part of a generalized “filter.” In
this way, the filter is viewed as a mapping from the infinite dimensional space of Navier-
Stokes solutions to a finite dimensional LES space, which can be represented computationally
without further truncation. The many-to-one nature of the mapping leads to an analysis
of the subgrid turbulence and its effects as stochastic, and the use of stochastic modeling
tools in the development of optimal LES models, which are deterministic [10]. This filtering
approach also leads to other differences in the current development relative to other LES
formulations. For example, in our formulation, there is no distinction between the grid
scale and the filter scale, or between numerical errors and modeling errors. It would also
be possible to formulate optimal LES based on appropriate non-invertible filters which are
distinct from the numerical discretization, but that is not the approach taken here.

In this paper, we examine the feasibility of using optimal LES techniques to develop
models for use with a coarse finite-volume representation of turbulence. Finite volume rep-
resentations are used because of their general applicability to flows with complex geometries,
in contrast to the spectral representations used in previous optimal LES studies [10, 11]. To
this end, an optimal finite-volume LES model that simultaneously represents Navier-Stokes
dynamics, numerical and subgrid effects is constructed and evaluated. It is important to
point out that, in the current study, the correlations needed for the optimal modeling ap-
proach are supplied from DNS statistical data, rendering the model specific to the isotropic
flow for which it is constructed. This is not an inherent shortcoming of the optimal LES
approach, but rather a choice which was made to evaluate the procedure in isolation of
further modeling which is necessary for a complete and general LES model. While research
is underway to generalize the optimal finite-volume LES model, specifically the modeling of
the correlations which are currently computed from DNS data, it is important to verify if
the optimal procedure, by itself, is adequate for constructing the compact, accurate models
proposed above. A promising approach to modeling the required correlations is discussed

briefly in section IV.



II. OPTIMAL FINITE-VOLUME LES

The existence of a model defining the limiting accuracy of an LES simulation has been
noted previously [10, 23]. This ideal LES model reproduces all single-time, multi-point
statistics exactly and minimizes the error of the large-scale dynamics. The evolution of this

ideal LES is defined by the following conditional average:

dw dul .

where w represents an LES field and u represents a real turbulent field (notice that these

are entire fields). This expression for the ideal LES is perfectly general. In the case when
the filter is invertible, 9% is not stochastic, and the ideal LES evolution reduces to 42 = 9,

indicating that the filtered field evolution can be determined exactly in terms of just the

—~

filtered field. Such a simulation is equivalent to a DNS, with the same resolution require-
ments. Only when the filter is a many-to-one mapping as described in section I does this
formalism correspond to an LES, and this is the case of interest here.

Unfortunately, direct computation of the ideal model is not practical, because of the
immense amount of statistical information contained in (6). Optimal LES is a formal ap-
proximation of the ideal LES using stochastic estimation, a well-known technique for ap-
proximating the conditional average with a manageable amount of data [24-26]. Optimal
LES has been previously applied to model the subgrid term with spectral numerical repre-
sentations of the Navier-Stokes-like terms in the filtered equation[10, 11]. In these previous
studies, the focus was the analysis of the resulting optimal subgrid model in order to identify
the fundamental properties a subgrid model should have in isotropic [10] and wall-bounded
[11] turbulence. The authors made no attempt to construct a general optimal LES model
for use in a range of complex turbulent flows.

One of the primary impediments to the broad application of the optimal LES approach
developed in these previous studies is their reliance on spectral numerical representations,
which are not easily applied to flows in complex geometries. In the present study, the
applicability of optimal LES to finite volume representations is explored. This is more
challenging than spectral methods, since exact derivative operators cannot be defined. To
avoid the numerical errors inherent in a finite-volume representation of the Navier-Stokes

terms, the optimal modeling procedure is applied to the filtered Navier-Stokes equation as
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a whole, rather than just the subgrid stress as was done in [10, 11]. A generally applicable
optimal finite-volume model requires modeling of the small-separation second-, third- and
fourth-order velocity correlations appearing in section IIB3. For the current study, this
requirement is being bypassed through the use of DNS statistical data, allowing us to focus

on the viability of the finite-volume optimal LES modeling procedure.

A. Finite-volume formulation of LES

To evaluate the feasibility of applying the optimal LES procedure directly to a finite
volume representation, a coarse finite-volume representation of homogeneous isotropic tur-
bulence is explored. In this case, the domain is a periodic cube of dimension 27, with the
numerical grid for each velocity component composed of N 3 cubes of dimension A = 27 /N.
To allow for staggered as well as collocated grids, the cubes are labeled as €2;;, each with
center located at 7% = &7® + 1A, where 270 is the origin of each grid. For collocated grids
x7® = 0, and for staggered grids #7® = —£e7, where €’ is the unit vector in the j direction.
The j indices refer to the grid associated with the 7% component of velocity, while % is a
vector of integers which establishes the position of the cube.

The finite-volume filter kernel, g (x — &) as defined in (1) is a top-hat filter sampled on a
grid and is given by:

gz — &) =6(z" — x)G (z1 — &) G (x2 — &) G (z3 — &) (7)

where ¢ is the Dirac delta function and G (z; — &;) is the one-dimensional box or top-hat

filter:
L oiflm—&l <3,

G(zi— &)= (8)

0 otherwise.

Note that, to support staggered grids, the filter kernel depends on which velocity component
is being filtered.

The finite-volume filtered velocity is, therefore, defined as:

i1
wj =23 /jS u; (x) de. 9)

The evolution equations for the filtered velocity are found by filtering the Navier-Stokes




equations with g, yielding the control-volume form of these equations:

Ou; Ou;uy Op 1 O%u;
___d ’ J d 4 — — _d ’ . J d 4 10
/Qﬁ T o, 0w T T Jo, 0% T Re Jo,, 0wy (10)
8uj
—Zdz’ =0 11
L o (1)
The divergence theorem is used to convert the volume integrals to surface integrals:
dw? 1 Ou;
A3’/ ; d’=——/ ~d'—/ ~—Lngd’ 12
dt * 89 Utk G o9 pric® +Re 090, oz}, kAT (12)

/ ujnjda:' =0 (13)
00;;

where n; is the outward pointing normal of the volume boundary 0€;;.

The evolution of the LES field now depends only on the surface fluxes in each volume.
In a standard finite-volume scheme, the fluxes would be approximated numerically through
reconstruction techniques, yielding approximations which converge as the grid size tends to
zero, A — 0. However, such convergence considerations are not applicable, for the LES
considered here, since A > 7 (7 is the Kolmogorov scale). Instead, the convective and
diffusive fluxes in equation (12) will be modeled using stochastic estimation. One could
also subject the pressure flux term to the same modeling technique, but, as pointed out
by Langford & Moser [27], such a representation would be inherently non-local and thus
impractical in complex applications. An alternative is to use an approximate continuity
constraint to determine the pressure fluctuation, as in traditional finite-volume methods.
Langford & Moser [27] have shown that an optimal scheme for pressure is only slightly more
accurate than the traditional schemes, especially in the staggered grid case.

The task of modeling the surface fluxes appearing in the exact LES equations (12) can
be simplified considerably. The flux across a particular face appears in the momentum
equation of two neighboring cells; to ensure conservation, the two cells must have identical
representations of the flux. In isotropic turbulence, homogeneity dictates that a model for
the flux through a given face must not depend on the location of the face. These two
requirements imply that a model need only be provided for three of the six faces of the
cube.

Further simplifications are introduced by isotropy. The symmetry of the grid requires
that the equations for the LES evolution be invariant to reflections and rotations in the

coordinate system. This basic requirement imposes a symmetry on the flux models, and
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implies that each flux term can be constructed from rotations and reflections of four (4)

basic fluxes. The terms M = M:? Mg

ww)? uww? w

/o, and M;u/az are used to denote these basic
fluxes, which are averages of ww, uw, dw/dz, and du/dz (for the remainder of this paper,
u, v, and w are used to denote components of w), respectively, over a face of dimension
A x A oriented with normal in the z-direction and located at the top (positive z side) of
the i volume element. For M, and My, /5., the relevant volume element is for the w-
component of velocity, and for the other fluxes, the relevant volume is for the u-component

of velocity. The four fluxes to be modeled are

$+a/2  pr¥i4A/2
Mz = / U1U3d$dy (14)
a2 Jadi-Af/2
z;‘+A/2 z}+A/2
= / / U3’U,3d$dy (15)
1’—A/2 ll_A/z
3 +A/2 3H1A/2 Su
M}, /5, = —Ldady 16
6w/8z A2 /3‘-—A/2 /3‘—A/2 0z ( )

T3 +A/2 LA/2 Ous
M s, = 2 dzdy 17
au/az A2 /1: A)2 /11 A2 32 x ( )
To actually perform a simulation, the models for these fluxes must be rotated and reflected

appropriately to generate all the terms in (12).

B. Stochastic estimation technique

In stochastic estimation, which is the basis for optimal LES models, one begins by defining
a restricted functional form (e.g. linear or quadratic) for the model. The stochastic estimate
is then determined by minimizing the mean-square difference between the model and the
exact quantity being modeled. The application of this technique to the finite volume fluxes
is discussed below, followed by a brief discussion of the sense in which such model can be

considered to “converge.”



1. Model definition

The stochastic estimation model m? of a particular flux term M?, is expressed as a sum

of linear and quadratic products of filtered velocities:
mi=A+> Brwt™ 4+ ) Crrwimwit. (18)
m m n

More elaborate model forms are possible, but at least a quadratic dependence is needed,
since the convective fluxes are quadratic. Note that m and n are vectors representing the
separation between the face being modeled (face 2) and the velocity term used in the sum.
One can extend the summation over all volumes, generating a global model, or restrict m

and n to a certain stencil of volumes, generating a local model.

The geometry of the stencils for local models is described through the following notation:
Ny x Ny x N} = N7 x N x N = N’ x N’ X N’

where N, N, and N, define the number of volumes in the stencil in each direction. In our
convention, the fluxes are estimated on a face with surface normal pointing in the positive
z-direction, with the stencil centered about this face. The u, v and w superscripts specify
the component of velocity for which the stencil is used. This distinction is necessary since,
in general, different velocity components will have different stencils for a given flux. When

referring to a stencil for a single velocity component, the simpler notation
N; x Ny X N,

can be used. In Fig. 1, examples of single velocity stencils are shown.

2. Defining the minimization

In the stochastic estimation technique, the model coefficients A, B and C' are determined
by minimizing the mean-square error with respect to the model’s inputs or events (w;:+m
and w}+mw,’;+" in the model defined by equation (18)). The stochastic estimate is intended
to approximate the conditional average constituting the ideal LES (in this case miy, =
(M*|& = w)), so it is the mean-square error in reproducing mi,..; that is to be minimized,

even though mf,, is not known. However, it can be shown [11] that this error is also
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minimized when the mean-square difference between M* and m* is minimized. Thus, it is
this mean-square difference

d* = M* —m? (19)
that is directly minimized in developing the estimates. We refrain from labeling d as an error
since it cannot, even in principle, be made to approach zero. Its mean square is bounded
from below by the variance of M* about m},,,,. Instead d will be called the “variation” of
the model.

However, there are at least two different ways to define the variation when estimating the
fluxes. The single-flux variation measures the difference between the model and the flux at
a single face, and is defined as

di = M* —m* (20)
While this is the most straightforward definition of the model’s variation, it is not the most
relevant to the dynamics of the LES evolution. For example, if the flux contributes to the
momentum equation for the w component of velocity, as for My, and My, /s,, then the
model appears in the momentum evolution equation as follows:

i
dw; _

dt (ST + mi —_ mi-(o)ovl) (21)

The contribution of the model to the variation in the momentum evolution is the dual-flux

variation of the estimate, defined as
dlil — ( M — mi) _ ( MEH001) _ mi+(o,0,1)) (22)

In general, the dual-flux variation d), is different from the single-flux variation dj, because
there are stochastic portions of the exact flux term M* that exactly cancel portions of the
flux term on the opposing face. The single-flux variation d| includes contribution from the
cancellation, and may thus overpredict variation in the momentum equation. Whenever the
variation is plotted or tabulated, d) is used, since this non-canceling portion of the variation
is most relevant to the dynamics of the LES, due to its explicit appearance in the momentum
equations.

In reporting a priori variations, it is clearly d that is of interest, but one of the other
variations may be most appropriate to minimize to determine the modeling coefficients A,

B and C. When local estimates are used, somewhat different models will result depending
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on which variation is minimized, and the differences can be important. For example, it
is shown in Appendix A that minimizing dj results in a model that conserves momentum,
and correctly predicts dissipation in the a priori sense. Whereas, minimizing d)| results
in models that are either conservative or have correct a priori dissipation, but not both.
Local estimates were computed using both the single-flux, d|, and dual-flux, dj;, variations,
and it was found that the increase in dj| due to minimizing the mean-square of d, is small,
but that the error in predicting a priori dissipation is significant when the mean-square of

d), is minimized. For these reasons, the local models developed here were determined by

minimizing d.

3. Determining Optimal Estimates

In order for a linear estimate to minimize dj, the following conditions should be met [28]:
(M) = () (23
(M = mI)E) = 0 (24)

where E is the event vector, consisting of all events used in the model equation (18). For

an optimal linear estimate (C = 0 in (18)) the event vector is given by:

E=(ufm) (25)

J

while the event vector for the optimal quadratic model is
wit™
E = I (26)

Hm, . i+n
w " wy,

where m and n vary over all separations defined by the stencil for a specific model.

Therefore, to determine the optimal linear estimates and the associated variation, the

following correlations are required:
(MM), (Mw}), (w™u]) (27)

The % superscripts have been removed since the correlations are averaged over all volumes. To

compute the optimal quadratic estimate, the following additional correlations are required:
(Mwrw?), (wwlul), (wwjwiw]) (28)

11




The data requirement for representing the entire fourth-order correlation function in (28) is
prohibitive. To ease the requirement, quadratic products in the model (18) are restricted to
nearby separations (|m —n| < 1).

The linear optimal estimate is determined using the following estimation equations:

(M) = A (29)
(Mw?) =Y B (wiwF) (30)

For the quadratic optimal estimate, the following set of estimation equations must be solved:
(M) = A+ 3 > O (wiup) (31)

(Muf) = 3B (wwf) +3 0> O (wiwful) (32)
(Muluf) = A(wPof) + 3 Bl (wiwPuf) + 33 O™ (wiwiuluf) — (33)

In this work, the correlations are computed using filtered DNS fields from a well-resolved
pseudo-spectral 256% simulation of forced isotropic turbulence. Numerical details of the
simulation can be found in Rogallo [29]. In the arbitrary units of the simulation code, the
DNS data has the following characteristics: turbulent kinetic energy ¢2/2 = 41.1, dissipation
€ = 62.9, Taylor microscale A = 0.209, and microscale Reynolds number Ry = 164. The
three-dimensional energy spectrum of the DNS is displayed in Fig. 2, with the filter width
clearly indicated. This is the same DNS used by Langford & Moser [10] for computing their
optimal subgrid stress model. Note that due to the relatively low Reynolds number of the
DNS, the filter width A could not be either much larger or much smaller in this flow if it is
to remain in the approximate inertial range.

The correlations were gathered from 15 DNS fields, each separated by approximately
one-half of an eddy-turnover time. To increase the statistical sample, each of the 48 possible
reflections and rotations of the field were also included in the averaging. Note that the
mapping from a single DNS field to a filtered field is not unique, because the volume elements
can be positioned at many different locations. When mapping from a 256° DNS field to a
323 LES field, 8° linearly independent choices exist for the mapping. By averaging over all
the possibilities, one ensures the highest quality correlations. In this work, a choice was
made to consider only 2® LES mappings for each DNS field. This number was chosen to

allow a data set that could be stored and managed on available equipment.

12




4. Convergence

In traditional finite-volume schemes for incompressible flows, the flux model is derived
from a reconstruction of the flux function from the cell-averaged velocity data. A reconstruc-
tion based on a Taylor series expansion is usually appropriate because it can be assumed
that the underlying function is smooth and that the grid separation, A, is small when com-
pared to the smallest lengthscales of the velocity field. The resulting approximation then
converges in the usual sense, in that the errors decrease with decreasing A, and can be made
arbitrarily small, limited only by the precision of the arithmetic used in the calculations.
For example, order of accuracy considerations in traditional finite-volume schemes results in
an error decaying as A? (a second order scheme) for a 1x1x2 stencil, while a 1x1x4 stencil
yields a fourth-order accurate scheme.

The ideas of convergence and order of accuracy of the numerical model must be reex-
amined in the current optimal finite-volume LES approach. In this case, A is by definition
not small compared to the smallest scales of the velocity field. Furthermore, in the LES
formulation considered here, the filter definition and numerical discretization are identical,
so the grid size A cannot be small compared to the filtered velocity either. Reconstruction
of the fluxes based on Taylor series or other numerical procedure would clearly be invalid in
this case, as are our usual notions of convergence.

In optimal finite volume LES, two senses of convergence should be considered, though
neither will be of direct utility in the current work. First, at fixed A we can ask whether
a sequence of increasingly complex models converges to the ideal model. For the model
defined in (18), the complexity can be increased by increasing the size of the stencil. But
this clearly does not yield convergence to the ideal model, since (18) is restricted to quadratic
dependence on w. While this does not yield convergence to the ideal, the way local models
approach the corresponding global model as the stencil is expanded, is of interest [30]. In
addition, adding higher order terms, (cubic, fourth order etc.) to (18) could in principle
result in convergence to the ideal, though this would be difficult to prove, and impractical
to implement.

The second sense of convergence is statistical. For a given non-ideal model, we are
interested in the convergence of statistical quantities representative of the large scales with

decreasing A. This is the sense of convergence defined by Pope (private communication,

13




2002; see also Meneveau [31]). In this case, A is considered to always be much larger than
the Kolmogorov scale (formally Re — 0o as A — 0), so the usual convergence to a DNS
does not apply. To capture the large scale statistics, it is clearly necessary for A to be
small compared to the large scales of turbulence (which are of order ¢®/e, where g2 is twice
the turbulent kinetic energy and e is the dissipation), thus Ae/g® should be small (it is
0.017 for the case considered in section III). For comparison purposes, the ratio of A to
the Kolmogorov lengthscale, A/n, is 23.7, and the ratio of A to the longitudinal integral
lengthscale, A/Ljy, is 0.195. Convergence in this sense clearly depends on the statistical
quantity considered. For the purposes of this paper, we will consider the low-wavenumber
spectrum and the large-separation third-order structure function. However, because of the
reliance on moderate Reynolds number DNS for the statistical data needed in the optimal
model, it is not possible to empirically explore statistical convergence in the limit defined

above.

IITI. RESULTS

Diagnostics of LES models are usually divided into two distinct categories: a priori and a
posteriori. In a priori tests one evaluates the model’s performance by comparing the modeled
terms with actual terms obtained from DNS (or experiments, where possible). Notice that
this kind of diagnostic is actually an integral part of the optimal modeling technique, since
the optimal model minimizes a given a priori variation (in our case, the single-flux variation
dj defined by (20)).

A-priori testing of LES models has often revealed that the modeled term correlates rather
poorly with the actual term determined from real turbulence realizations. In the language
of the current study, the variation associated with the model is large. As was mentioned
in section IIB2, it is inappropriate to label this variation “error,” because much of this
commonly identified “error” is actually due to the stochastic nature of the filtered field
evolution. Due to the many-to-one nature of the filter mapping, a filtered field does not
include enough information to uniquely determine its evolution, or for a finite volume filter,
the fluxes. The variability in the possible filtered evolutions is responsible for the irreducible
variance about the ideal LES evolution given by (6).

Ideally, one should separate the variation measured a-priori for any model into two
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components; the deterministic error of the model and the stochastic variance. The stochastic
variance is intrinsic to the LES and is the variation attained by the ideal LES model. This
portion of the a-priori variation is only dependent on the characteristics of the filter and the
turbulent flow. The deterministic error reflects modeling errors and quantifies the accuracy
of a given model in approximating the ideal. Unfortunately, these components of the a-priori
variation cannot be computed separately. Only the combined variation of a given model can
be determined, and it can give the false impression that the model is inaccurate when it is
the stochastic variance that is large.

In many models found in the literature [32-35], the correlation between the a priori and a
posteriori results has been poor, since performance commonly appears to be unsatisfactory
in the former, but is acceptable in the latter. This suggests that the a-priori results may
have been dominated by the stochastic variance component, which has no effect on single-
time multi-point statistics [10, 23]. To compare LES models fairly in a-priori evaluation,
one must be careful to keep the stochastic portion of the results consistent. In the present
case, the a-priori results for all models are computed with the same filter and for the
same turbulent flow. Therefore, the a priori variations for the models are indicative of
relative model accuracy. In particular, the measured difference in the mean-square variation
associated with two models is also the mean-square difference in the deterministic error,
which can be used as a guide in selecting the best stencil geometries and model inputs.

The a posteriori tests measure the performance of the models in actual simulations, with
emphasis on the simulation results, rather than a detailed analysis of the models’ accuracy.
The models with the best performance in the a-priori tests will be evaluated in simulations,
where they will be compared with the dynamic Smagorinsky subgrid model and filtered DNS

results.

A. A Priori Analysis of Global Estimates

Relative root mean-square variation measurements for the global estimates are shown in
Table I. Shown are the a-priori dual-flux variations djj, which, as noted before, are a better

measure of impact on the dynamics of an LES than the single-flux variations d;. The RMS
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variations are defined as:

RMS = <dﬁ> (34)
<(M1’. _ Mi+(o,0,1))2>

Note that the difference between the mean-square variations of two models, 64, is a
measure of the difference in the deterministic modeling error between these models. One

can easily verify the relation between the variation and deterministic error differences by

defining é, as:

84 = RMS,% — RMS;? (35)

(), = (),

- <(Mi _ Mi+(o,o,1))2>

where the 1 and 2 subscripts refer to two different models.

Writing the dual-flux variation d); as the sum of the modeling error e and stochastic
variance v
dy=e+v, (36)
substituting (36) in (35) and expanding yields

8, = <e2)2 - (62)1 +2({ev)y, — 2{ev), + (Uz)z — (Uz)l (37)
<(Mi _ Mi+(0,0,1))2>

Equation (37) can be simplified by noting that the stochastic variance is a property only of
the filter and the flow, not of the model, so that (v?), = (v?),. Furthermore, the modeling
error and stochastic variance are orthogonal (see [11]); that is (ev), = (ev); = 0. Therefore,
4 is the difference in mean-square modeling error between two models

— (€%)y = ()
ba = <( Mi — Mi+(0,0,1))2>. (38)

Variation measurements can thus be used as a measure of relative modeling accuracy between
the optimal models.

These variation measurements allow one to make comparisons of the following: linear vs.
quadratic estimates; staggered vs. collocated grids; local vs. nonlocal quadratic products.

Local quadratic products are those in which the velocity components forming the quadratic
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event variable are located in the same or overlapping volumes. For nonlocal quadratic prod-
ucts, the separation between velocity components may be greater. One can also assess the
importance of terms which are not similar to those in standard finite-volume schemes. These
terms will be referred to as nonstandard. Standard terms are those that would arise in stan-
dard finite-volume schemes: w velocities for My, /a,; u velocities for Moy .; w—w velocity
products for My.; u-w velocity products for M,,. Estimates having only standard terms
are marked with a 1 in Table I. Nonstandard dependencies in the model might improve esti-
mates because the velocity components are correlated, so that velocity components on which
a quantity is not directly dependent (e.g. v in the the My, flux) can provide information
about that quantity.

The following conclusions are supported by the variation measurements:

e Linear estimates are suitable for estimations of the viscous fluxes, Mgy, /5, and Masy/s.,

but not for the convective fluxes (as expected).

e For the convective fluxes, My, and M, on collocated grids, the inclusion of nonlocal
quadratic products provides modest (< 3% of the dual flux term) reduction in error
when only standard terms are used, and a larger (> 5%) reduction in error when

nonstandard terms are used.

e For estimates with only standard terms, there is no clear advantage to either the
staggered or collocated grid. When nonstandard terms are included, the staggered
grid is better for the viscous fluxes, and the collocated grid is better for the convective

fluxes.

e For the viscous fluxes, including nonstandard terms provides a modest (3-4% of the
dual flux term) reduction in error. For the convective fluxes, the use of nonstandard

terms reduces error by up to 6%.

For estimates with only standard terms, the relative root mean-square variations are
about 36% for May/a., 51% for Mausa., 44% for My, and 50% for M,,. These variations
are large, especially considering that they are normalized by the magnitude of the total
flux term, which represents both the Navier-Stokes and subgrid effects. The large a priori
variations of these global estimates are similar to those encountered by Langford & Moser

[10] and Vélker, Moser & Venugopal [11] for the subgrid terms. As pointed out previously,
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such large variations are to be expected if the term being modeled is largely stochastic.
Particularly, if the variance about the ideal model dominates the variation, then a large

variation will not impact the accuracy of an LES.

B. A Priori Analysis of Local Estimates

While a global model will provide the best estimate for the fluxes, the computational cost
associated with the large stencil (32x32x32 volumes for each velocity component) makes it
impractical for actual simulations, and may be unnecessary. Local models may be nearly as
accurate, at a fraction of the cost of a global model. A large collection of local models was
computed for both staggered and collocated grids. The complete set of a priori results can
be found in Langford [30].

The observations made in the case of global estimates still hold for the local models.
For the viscous fluxes, linear estimates are sufficient. For convective fluxes the nonlocal
quadratic models result in the lowest variations. There is, however, a dependence on stencil,
flux and type of grid on the effect of using standard or nonstandard estimates.

The viscous terms have little sensitivity to the use of nonstandard terms, notably in the
thinner stencils (the width of the stencil is related to the number of volumes in the direction
parallel to the face, while the length is related to the number of volumes in the direction
normal to the face). With wider stencils, accuracy improves with the use of nonstandard
terms, but the improvement is small. For example, the best linear nonstandard staggered
model for Ma,/a,(the 5x5x6-6x6x6-6x5x5 stencil) shows only a 7% improvement in the
variation over the much thinner linear standard staggered 1x1x6-2x2x2-2x1x1 stencil.
Note that the smaller stencil is composed of only 16 volumes, while the best model’s stencil
is composed of 516 volumes. The cost of the model increases faster than linearly with the
number of volumes (N2, or Nlog(N) if a Fourier transform is used), so one must weigh the
small accuracy improvement against the large increase in cost.

The effect of nonstandard terms on the convective fluxes is also stencil dependent. The
effect on the thinner stencils is small, but the improvement on the wider stencils is quite
significant, especially in the collocated case (up to 19% improvement). The improvement in
the case of staggered grids is not as important (a maximum of 6%). Once again one must

‘measure the cost of using a wider stencil against the reduction in error.



When extending the stencil, one must weigh the advantages of lengthening versus widen-
ing. It is clear from the a priori results that lengthening is preferable in almost every
occasion. In the viscous flux case, widening the stencil brought little, if any, improvement to
the variation, while lengthening the stencil from 2 to 6 volumes decreased the variation by
as much as 22%. In the case of the convective terms, the same observation holds, with the
caveat that if nonstandard terms are used, widening of the stencil does produce a noticeable
decrease in variation.

The difference in variation between the best local estimates and the global estimates is
small. The variation for .the best estimates (with stencils which occupy approximately 1/25
of the volume occupied by the global stencil) are within 10% of the global estimates, and
most of the improvement in accuracy occurs when lengthening the stencil to four (4) volumes
in the direction normal to the face. This indicates that most of the information needed for
the accurate estimation of the fluxes is local, and that the use of local estimates does not
lead to variations which are much greater than those observed with global estimates. This
is consistent with the observations of Langford [30] in spectral based optimal LES.

With these observations about local estimates in mind, one can make suggestions about
the stencils to be used in actual simulations. For the viscous fluxes a standard linear model is
adequate, while a quadratic model (as expected) must be used for the convective fluxes. To
improve the accuracy of the models, the extension of the stencil should be primarily in the
direction normal to the face. If further accuracy is desired, the stencil can be widened and,
in this case only, nonstandard models should be used. This last recommendation appears

more important for collocated grids than for staggered ones.

C. A Posteriori Analysis of Local Estimates

The choice of local models for the a posteriori analysis is based on the results from the
previous section. The models analyzed a posteriori are listed in Table II with their a-prior:
variations displayed in Table III. The nomenclature of the models is the following: the first
letter indicates whether the model is for a staggered or collocated grid, the second character
(2, 4, 6 or w) indicates the stencil geometry and the third letter, if present, indicates the
use of standard (s) or nonstandard (n) finite-volume events in the model. Model descriptors

without a third-character refer to models using only standard events. Note that the stencils
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are only given for four fluxes shown in Table II because by isotropy, these four fluxes can be
rotated to define the stencil for any of the required fluxes (see Section I A). For this reason,
there is no v-dependency in any of the standard models shown.

In a priori analysis, lengthening the model’s stencil yielded the largest improvements
in the accuracy of the flux. Widening the stencil did not bring such benefits, unless non-
standard terms were used. With these characteristics in mind, most of the models for a
posteriori analysis were constructed with long, thin stencils. Wider models (models Cws,
Cwn, Sws and Swn) were used to verify if extending the stencil in the direction parallel to
the face was indeed ineffective for error reduction. Most of the a posteriori models only con-
tain standard terms, but four pairs of models (model pairs C6s-C6n, Cws-Cwn, S6s-S6n and
Sws-Swn), with identical stencil geometries, were simulated with standard-only and stan-
dard+nonstandard terms. These results allow the investigation of the effect of nonstandard
terms on model accuracy.

The a posteriori results were obtained using a third-order Runge-Kutta scheme for time
integration. To maintain turbulence, a negative viscosity forcing term was used to stir the
flow. The forcing was identical to the one used in the original DNS [10]. The LES statistics
were collected for approximately 60t, with samplings separated by 0.15¢, where ¢ is the

eddy-turnover time defined by
2
q

T 2%

The initial fields for the simulation were obtained by filtering DNS fields.

t (39)

Pressure was determined by projecting the velocity field onto a discretely divergence-free
space, using an approximate divergence operator. As pointed out by Langford & Moser
[27], such a projection introduces a modeling error because the filtered field does not exactly
satisfy any continuity constraint. As suggested by their results, a two or three-point stencil
(for staggered and collocated grids, respectively) for the approximate divergence was used,
which provides an accurate approximation, at least in the staggered grid case. By symme-
try, these approximate divergence operators are equivalent to the second-order divergence
approximations commonly used in finite-volume methods. Unfortunately, many of the col-
located models were not numerically stable and results were obtained only for few of them
(models C2, C4 and Cwn). The reason for this instability appears to be connected to the
treatment of pressure, leading to the commonly observed odd-even decoupling in collocated

models without enough dissipation at the highest wavenumbers.
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The three-dimensional energy spectrum is shown in Fig. 3. Most of the models agree very
well with the filtered DNS energy spectrum, with small errors in the high wavenumber region.
The smallest stencils, represented by models C2 and S2, do not seem to incorporate enough
information to represent the higher wavenumbers. The collocated model C2 is especially
inaccurate, only wavenumbers up to around 7 are correctly represented. The staggered
model S2 is better, but there seems to be excess dissipation at the higher wavenumbers.
The larger staggered stencils are remarkably better. With model S4, the LES spectrum is
accurate throughout the wéwenumber range, and model S6 improves upon those results only
slightly. The collocated C4 model only improves slightly upon the C2 model, and is not
nearly as accurate as the staggered models.

Surprisingly, widening the stencil, as in model Sws, caused a large discrepancy in the
energy of the higher wavenumbers. Inspection of the stencils for the Sws model showed that
the linear terms for the M,,, fluxes had an anti-diffusive character for large wavenumbers.
This is likely to lead to poor large-wavenumber performance, and may lead to numerical
instabilities. There is no a-priori guarantee that the optimal estimation procedure will
produce numerical schemes that are stable. Such stability constraints could be included in
the optimization and this should be explored in future research.

The models with nonstandard terms (Cwn, S6n and Swn) were markedly inaccurate when
compared with the similar models which used only standard terms (S6s and Sws), especially
at high wavenumbers. The value of nonstandard terms in reducing the a priori error is
dependent on the correlations between different velocity components. Apparently in the
LES, these cross correlations were not maintained causing the nonstandard terms to degrade,
rather than enhance performance. An examination of the coefficients for the nonstandard
terms reveals that many of them involve what appear to be discrete approximations to
Ou/dz, dv/dy and/or Ow/dz, so as to suggest that the quantities being modeled can be
rewritten using continuity. Thus, it may be that modeling errors inherent to the continuity
representation contribute to the poor performance of nonstandard models.

The energy transfer by the models can be analyzed by computing the third-order structure
function

Ss(r) = ((u(z +7) — u(2))®), (40)
which is shown in Fig. 4. The structure function results for the smaller models (C2 and

S2) are not in agreement with the DNS data for small separations. This reveals that the
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energy transfer is not adequately represented by stencils smaller than 4 in the direction
normal to the face, and explains the deficiencies encountered in the energy spectrum of the
smaller models. The remaining staggered models reproduce S3 quite accurately, while the
C4 collocated model underpredicts it at all separations and the Cwn collocated model is
quite inaccurate for small separations. For the staggered grids, the widest stencil (model
Sws) is slightly better than the thin stencils (models S4 and S4s), but the difference is almost
negligible. The nonstandard models are again less accurate than their standard counterparts.

In Appendix B, the model coefficients for the S2 and S4 models are given. The S4 model
is given because it is the smallest stencil that produces good agreement with the filtered
DNS data, for both the spectra and the structure function. The S2 model is shown for
comparison with a standard second-order finite-volume scheme. One important difference
between the S2 model and the standard second-order staggered approximation is that the
optimal model is more dissipative, primarily due to the linear term in the convective fluxes.
This is expected because the optimal model includes the effects of the subgrid turbulence,
which is primarily dissipative. Also shown in Appendix B is the procedure for constructing
the S2 model, that can be easily extended to all other optimal models discussed in this
paper.

In Figs. 5 and 6, results for the optimal finite-volume LES models are compared with re-
sults obtained with the dynamic Smagorinsky subgrid scale model. The dynamic Smagorin-
sky results were obtained on staggered grids using the same code used for the optimal finite-
volume LES cases, employing second- and fourth-order accurate discretization schemes for
the fluxes and subgrid models. In Fig. 5, the dynamic Smagorinsky model dampens the
high-wavenumber spectra excessively when compared to the optimal models and the filtered
DNS results, while the spectra for optimal and dynamic Smagorinsky models is comparable
up to wavenumbers around 18.

In Fig. 6, the structure function results indicate that the smaller stencils, S2 and the
second-order accurate dynamic Smagorinsky, are not appropriate for an accurate represen-
tation of the energy transfer in this LES. For these small stencils, the dynamic Smagorinsky
model is better than the optimal model at small separations, while overpredicting the struc-
ture function by a large margin when the separation is larger. When using the larger stencils,
as in the S4 optimal model and the fourth-order accurate dynamic Smagorinsky model, the

energy transfer of the fourth-order dynamic Smagorinsky model is slightly more accurate
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than that of the second-order model, but the structure function is still overpredicted in most
of the separation range. On the other hand, the optimal model S4 structure function is very
close to the filtered DNS results for all separations. Therefore, for this example, the optimal
model S4 is more accurate than the dynamic Smagorinsky subgrid model using a standard

finite-volume discretization scheme with an identically sized stencil.

IV. DISCUSSION

An optimal coarse finite-volume LES modeling technique has been developed and ap-
plied to isotropic turbulence. This approach addresses some of the issues encountered in
current LES modeling, namely: ambiguous definition of filtering and treatment of numer-
ical discretization errors. While many current LES models allow the filter to be defined
implicitly by the numerics, the optimal finite-volume LES technique rigorously defines the
filter (equation (9)) and the resulting model is strongly dependent on this choice, as it must
be. Numerical discretization issues usually encountered in coarse representations of LES
are resolved in the optimal technique by handling the Navier-Stokes, discretization and sub-
grid effects simultaneously. In this way, the combined numerical and modeling errors are
minimized.

The results obtained while testing the optimal finite-volume staggered models are encour-
aging. The energy spectra and third-order structure functions computed a posteriori are of
comparable accuracy to those obtained by Langford [30] using a spectral numerical method,
a sharp Fourier-cutoff filter and an optimal model for the subgrid stress. The spectral nu-
merical method used in Langford [30] avoids the discretization errors usually encountered in
LES. The current approach achieves similar results, indicating that the numerical limitations
one expects in a finite-volume representation have largely been avoided. The a-posteriori
results for the optimal model were more accurate than those obtained with the dynamic
Smagorinsky model using either standard second- or fourth-order discretizations for the flux
terms. The dynamic Smagorinsky results show high-wavenumber discrepancies in the en-
ergy spectra that are not observed in the data from the optimal models. This behavior is
consistent with the inability of the coarse low-order standard numerical method to resolve
the high-wavenumber components of the resolved field.

While the performance of the optimal finite volume LES evaluated here was quite promis-
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ing, there are a few issues that need to be addressed. In a few isolated cases, the optimal
estimation procedure yielded model coefficients with poor numerical properties, and in some
cases the models were unstable. Methods that constrain the optimal procedure to produce
only stable numerical schemes should be pursued in future research. Instabilities also arose
in collocated models, probably due to the implementation of the continuity constraint. Tra-
ditional finite-volume schemes have similar difficulties that commonly lead to checkerboard
decoupling of the pressure. In future research with collocated grids, stabilization procedures
for computation of the pressure (e.g. Rhie & Chow [36]) may be useful.

The modeling procedure described here, in which DNS statistical data is used as input
to the optimal modeling formulation, is clearly not useful for generating practical LES mod-
els, unless the need for DNS data can be eliminated. Because the results of the current
study indicates that our approach can produce accurate LES, such a generalization is being
pursued. A promising approach to eliminating the need for LES data is to evaluate their
required statistical quantities theoretically. The correlations required as input to the mod-
eling (see Appendix B) are surface and volume integrals of multi-point second, third and
fourth order velocity correlations. Using a combination of Kolmogorov theory (the -25 and
% laws for the second and third order correlations respectively), the quasi-normal approx-
imation (fourth order correlations) and a generalized dynamic procedure, it appears that
the required correlations can be determined under the assumption that filter width is in
an inertial range, and that the small scales are isotropic. Once these multi-point velocity
correlations are determined, they can be integrated as needed for the finite volume grid
being used in any particular problem, and the optimal modeling coefficients specific to that
grid can then be found. We envision this as a preprocessing step for a simulation, similar
to constructing and storing the stencil coefficients for a standard differencing scheme on a
general mesh. When the assumptions of an inertial range and small scale isotropy are not
valid (e.g. near walls), then further modeling will be required. However, it is still a matter
of modeling the small-separation multi-point velocity correlations.

It is useful to contrast the development of the finite volume optimal LES formulation
described here with common finite volume numerical schemes and to the MILES approach
introduced by Boris, et al. [37]. In the current formulation, the representation in terms of
volume averaged velocities is identical to standard finite volume techniques. But, because

the volume size is by definition large compared to the smallest scale of motion, it is not valid
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to approximate fluxes using standard reconstruction techniques, which are based on the
assumption that the velocity is smooth on the scale of the volume size. Another circumstance
in which this assumption is violated is shock capturing. In this instance, special numerical
approximations have been devised to account for the sub-grid features of the flow (the
shocks), based on knowledge of the properties of shocks. Thus shock capturing schemes
are designed to recover the shock jump conditions, keep the numerical shock as thin as
possible on the grid (of order the grid spacing) and preserve the monotonicity of the shock
solution. Subgrid turbulence is more complex and our knowledge of the properties of subgrid
turbulence is only statistical. It is thus this statistical information that is used in the optimal
LES formulation. The MILES formulation first introduced by Boris, et al. [37] is based on
the observation that one of the statistical properties of subgrid turbulence is that, like shocks,
it is dissipative. Numerical schemes similar to those designed for shock capturing are thus
used in MILES, with the dissipative properties adjusted to more closely resemble those of
turbulence. However, in general, subgrid turbulence has numerous statistical properties
that impact large-scale dynamics, besides dissipation. In particular, with finite volume
representations like those described here, the subgrid affects every aspect of the filtered
dynamics. The optimal approach allows models to be constructed that reproduce most of
the dynamically significant statistical properties a priors [11].

The finite volume optimal LES formulation described here was pursed rather than the
theoretically more straight-forward formulations based on spectral representations because
a spectral formulation cannot easily be applied in flows with complex geometries. While, the
current study involves only a very simple flow (isotropic turbulence) on a uniform Carte-
sian grid, the approach is clearly applicable in general geometries on general grids. The
only limitation is the availability of the required statistical data. In this study, statistical
data was obtained from DNS, but current research is directed at providing this information

theoretically.
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APPENDIX A: ANALYSIS OF ESTIMATES BASED ON SINGLE AND DUAL-
FLUX VARIATIONS

While the dual-flux variation dj; is more relevant to the LES evolution, using this variation
in the estimation procedure is not without problems, as demonstrated by the following one-
dimensional model problem. Notation for this problem is illustrated in Fig. 7. The variable
w is a scalar and M is the z-component of a vector field.

The model system is considered to be homogeneous, with a reflectional symmetry in its

single spatial direction. It follows that the symmetries of this system are

(wrw*) = (ww), (A1)
(whw) = (ww™), (A2)
—(M*w) = (M*tw?t). (A3)

The exact evolution of the model system is & = M+ — M~, where & = dw/dt. Therefore,

the mean dissipation € in this system is

e = (ww)
= (M) - (M-w)
= 2(M*w)
= =2(M*tw*). (A4)

1. Estimate based on Single-Flux Variation (dl)

If the linear stochastic model of M* given event data w and w* is:
mt = awt + Buw. (A5)

The coefficients o and 3 can be determined by the stochastic estimation procedure. When

minimizing the single-flux variation dj = M* — m?, the stochastic estimation procedure
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yields the following linear system

(wrw*) (wwt) a (M*w™)

= : (A8)
(wrw)  (ww) B (M*w)
From the symmetries (A1-A3) it follows that the solution for the coefficients is
+opt
a=—p= ) (A7)

(ww) — (ww*)’

The estimated evolution of the system is w = m* —m", so that the estimated dissipation

€ is

¢ = <ww>
= (m*w) — (m~w)
= a ((wtw) - (ww)) - o ((ww) - (w™w))
= 2a ((ww*) — (ww)) . (A8)

Substituting equation (A7) into equation (A8) and comparing with the expression given by
(A4), is is clear that € =e.

The shortcoming to this method of estimation is the possibility of fluctuations of M*
that exactly cancel fluctuations of M~. Unfortunately, part of the “effort” of computing
the estimate goes to estimating the part that cancels. An improvement may be achieved by
minimizing the variation in the dual-flux, M* — M~, rather than the single-flux variation

in only M.

2. Estimates based on the Dual-Flux variation (d)|)

When using the dual-flux variation, the estimate is of the following form

mt —m~ = aw’ + pw — aw — fw” (A9)
= awt + (8 - @)w— fw” (A10)
= a(wt —w) + flw—w7). (A11)

This can be regarded as a linear stochastic model of (m* —m™) given event data (w* —w)

and (w—w™).
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The estimation equations in this case are given by the linear system

((w* —w)w* - w) (w-v)w -u) ) (e

(wt —w)w-w) (w=v)w-v) ) \ 5
_ [t =yt -y ) 12

(= M) (w =)

The solution for this system is

(MF = M™)(w? — w))

¢ =B = o w =) = (@ = o) wF — w)) (AL3)
and the estimated dissipation is
¢ = <171w>
= (o~ m7)u)
= o (" —w)u) (- w7)w))
— () — 2 ) + o))
= 20 ((ww*) — (wu)). (A1)

Note that (A14) is identical to equation (A8) of the single-flux estimate. The value of a for
the previous solution, equation (A7), was such that € = e. The value of o for the current
technique, equation (A13), is different. The current solution for « given in (A13) depends on
(w~w), while the previous solution, equation (A7), does not. It follows that the coefficients
o for the two cases are in general different, and that for this method, d+#d.

Therefore, a dual-flux estimate written in conservative form will not correctly match

dissipation. One can, however, choose to estimate the dual-flux in a nonconservative form,

ie.
mt —m™ = aw? + fw +yw™. (A15)

In this case, the estimation equations are

(wrw™) (ww™) (ww™) o (Mt — M~ )w)
wre) ww) @y || 8= | oMo | a1
(wrw?) (ww*) (w™w®) | \ 7 (M+ = M~ )w™)
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Symmetries dictate that a = v, but nothing is implied about the relationship to 8. Without
actually solving these equations, we will simply consider the second row in (A16). It follows
that

{((m* —m )w) = (M*— M )w)

d=d (A17)

This estimate does not suffer from cancellation problems, and it has the correct dissipation.
However, it is not conservative.

In the three cases shown above, it was demonstrated that there are several choices for
local estimation techniques, but they all suffer from a deficiency. One can construct a con-
servative single-flux estimate that correctly matches dissipation, but some of the estimation
power goes to minimize an error in portions of the flux that trivially cancel. Or one can
construct a conservative dual-flux estimate that is aware of the cancellations, but dissipa-
tion is not correctly matched. Finally, one can construct a dual-flux estimate that minimizes
the most relevant error and correctly matches dissipation, but the resulting estimate is not
conservative.

There is yet another alternative. One can construct a conservative dual-flux estimate,

subject to the constraint that dissipation is matched, i.e. that
a{(wt —ww) + B {(w —w)w) = (M - M )w). (A18)

For the simple example explored here, the procedure reduces to the conservative single-flux
estimate. However, as additional nonlocal velocity data is incorporated into the estimate,
the procedure yields a distinct, fourth estimation procedure. Also note that in the limit
of a global estimate, all four estimation procedures are identical. This can be understood
by noting that for the global estimates, one can regard the procedure as the simultaneous
estimation of fluxes at all locations, not just flux at a single location. Then, the combination

of fluxes at opposite faces is merely a linear transformation of the quantity being estimated.

APPENDIX B: MODELS S2 AND S4 FOR STAGGERED GRIDS

The coefficients for the optimal finite-volume LES models S2 and S4 as formulated in
the equations below, are presented in table IV, with coefficients for the standard second-

order finite-volume scheme shown for comparison. The optimal models are strictly valid
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only for the test case presented (microscale Reynolds number Rey = 164, Taylor microscale

A = 0.209, kinetic energy ¢2/2 = 41.1, dissipation € = 62.9 and grid spacing A = 7/16).

ou
ot

v A(ui—l,j,k + ui+l,j,k) + B(ui—2,j,k + ui+2,j,k)

+ C(Ui o1 + Usjemr + Ui grer + U jprn) + Doz + Uiga—z + Uijrsz + Us o)

+ E(ui,j,k) + F(ui—l,j,kui—l,j,k - ui+1,j.kui+1,j,k) + G(ui—l,j,kui,j,k - ui,j,kui+1,j,k)

 H( =g 0 Ui + Uigrinthirzin) + T (Uisojuthizaje — Ui julisain)

+ J (Ui jor e Vio1k T Wi o1 kVise T Ui jema Wi gp T Ui g1 Wik

= Ui i kVim1, 541,k — UikVsgrre — UijeWio kst — UijaWijke1

F Vi1 kUi gk — Vicrjrreierie T Vigalie = Vijirelijek

+ Wiy Wik — Wiy jes1Uigesr T Wi welije — 'wi,j,k+1ui,j,k+1) — Pz

ov

ot

= A(Vijo1e F Vigere) + BVijan + Vijiak)

+ C('Ui—l,j,k + Vijk-1 + Vijepr T v:‘+1,j,k) + D('Ui-z,j,k F Vi -2 t Vijrs2 T vi+2,j,k)
+ E(5) + F(V: 516005216 — Vs a1kl jere) G (Vi 5o 140150 — Vi i kUi jr1e)

+ H(—vi,j-—2,kvi,j—l,k + vi,j+1,kvi,j+2,k) + I('Ui,j-z,kvi,j—z,k - 'Ui,j+2,k'vi,j+2,k)

+ J (Ui joa Vs Ui eVs e — Yigt,jo1,kVi1,5 — Yirr,w Vi1,

+ Vis1 kWi j—1,6 T VicyeWige + Vige—1Wij-1k + Vs k1 Wi ik

— Vi eliv1i-16 — Vijeliz1ie = VigaWii-tes1 — Vi eWi gkt

+ Wi jo1kVi gk — Wijm1xe1Vighee1 T Wiialie — wi,j.k+1”i,j,k+1) — Dy
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%%ﬂ = A(wi,j,k—l + wi,j,k+1) + B(wi,]‘,k—2 + wi,j,k+2)
+ C(wi—-l,j,k + W1k + Wijpax + wi+l,j,k) + D(wi—2,j,k + Wi ook + Wi + wi+2,j,k)
+ E(wi,j,k) + F(wi,]‘,k—lwi,j,k—l - wi,j,k+1wi,j,k+l) + G(wi,j,k—lwi,j,k - wi,j,kwi,j,k+1)
+ H(—wi,j,k—2wi,j,k—1 + wi,j,k+1wi,j,k+2) + I(wi,j,k-z'wi,j,k-'z - wi,j,k+2wi,j,k+2)
+ J(ui,j,k—lwi,j,k U Wik — Uigr k1 Wit ik — Uig1,5,xWig1,5x
F Vs k-1 Wik + VijkWige — Vijrrx—1Wigene = Vi, eWijee

F Wiy kUi je—1 T Wisyjxigr T Wij1,6Vi50—1 T Wij-1,.Vi5k

= Wi xUis1,5,6-1 — Wi aivr e — WiaVijrie—1 — wi,j,kvi,j+1,k) — Dz

The procedure for computing model S2 is described below, the extension to the other

models is straight forward. Each of the basic fluxes (Myw, Muww, Mouja, and Mpy,s,) must

obey the stochastic estimation equations (23) and (24), which are repeated here for conve-

nience:
) = () (B1)
((M*—mYEf) = 0 (B2)
Note that the méan-preserving condition (B1) may be incorporated into (B2) by adding

a constant term to the event vector E® and, therefore, the estimation equations can be

expressed as:
(mE)) = (ME) (B3)

The % superscripts may be removed since the correlations are averaged over all volumes. For

clarity’s sake, the following notation will be used for the filtered velocity components:

u_ =u(z) (B4)
uy =u(z+(0,0,A)) (B5)
w_ =w(x) ‘ (B6)
wy = w(z +(0,0,A)) (B7)
wy =w(:c+ (——?—,O,%)) (B8)

wmu (o (20.8)) -



The event vectors for each basic flux are:

M.

E=|u_w, (BlO)

u_w

E= (B11)

Mau/az:

E=|u (B12)

Mawe::

E=|w_ (B13)
Wy
Note that the equation for the model (18) may be written in the following form (summa-
tion on repeated indices):
m* = CLE} (B14)
where C is a vector of coefficients. Therefore, the estimation equation (B3) may be expressed

Ci (ExEy)) = (ME)) (B15)
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or in matrix notation:

(B\E) (B\Ey) ... (B\E,)] |G [(ME})]

(B2Er) (EBEy) ... (ExBn)| |G| _ [(ME) (B16)

....................

(B Er) (EnEn) ... (ExE,)| |Cnl | (ME,)

where n is the number of events for the model. Notice that the correlation matrix is sym-

metric.

Therefore, for model S2, the matrix form of the estimation equations is (since the matrices

are symmetric, only the upper triangle of each is shown):

M
1) @) ww)  wew) ) @) | o] [ (M)
() (u_uy) (Wlw)  (Pwy)  (ueupw)  (uougw) CMuw (Myu_)
(W) (upuiw,) (upu-w)  (Wdw,) (ulwy) C Mo (M)
((uaw,)?y (Pwawr) (u_upw?) (u_wyuiw) CMww | = | (Mypu_w,
() (ucwgw) ) | |G| | (M
((u+w,-)2) (uﬁ_w,un} Cg™ (Mypuswy
i ((u+wl)2> | _C-f’!’“"_ | (Mywuswy
(B17)
Myw:
1) ) (@2) @) wew) | [oe] [ (M)
(w?) (w_wy) (w?) (ww?)  (wiwy) CMww (Myw-)
(W) (wiu?) (i) (wed) |G| M) | g
(wt) ((w_wy)?) (wiwy) CMuww (Myww?)
(wh)  (w-wl) | |G (M} )
i ((wowy)®)| |C8*]  [(Muww-wy))
Mauja:: )
L) ) ||| (Mows)
(u?) (upu_) C;W /%2 = | (Mpujo:u-) (B19)
@) | |G| |(Mowesus)
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Maswa::

1 (wo)  (wy) C{u ooz (Maw/6z>
<’LU?_> ('LU+’U)_> Céuawaz = <M3w/62w—> (BQO)
W) | |G| |{Mousprwy)

The solution for these estimation systems gives us the models for the basic fluxes corre-
sponding to model S2. Many of the correlations appearing in the estimation equations may

be simplified by using homogeneity and isotropy, such as:

(ug) = (u) = (wy) = (w-) =0
(ud) = (ul) = (wi) = (wl)

(uyul) = = (u-u)

The extension of the estimation procedure to other model inputs and stencils is trivial,
since the estimation equations are only based on the event vector . When constructing
estimation equations for a different model, all one must do is form an event vector with all
model inputs, compute the correlation matrix (E;E;) and the right-hand side vector (M E;),
and solve the resulting linear system ((E;E;)C; = (ME;)) for the coefficients C. In this

work, Gaussian elimination was used to solve the linear system.
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TABLE I: Relative estimation variations for various finite-volume fluxes. Variations are shown for
linear estimates, for estimates with local quadratic products (LQ), and for estimates with nonlocal
quadratic products (NLQ) formed from velocities in cells separated by a distance of up to one cell
width. Also shown are simplified estimates (1), for which only terms from standard finite-volume

approximations are included.

grid arrangement : relative variation
and estimation type My My Mau/o- Mpuw /-
collocated linear 0.9983 0.9983 0.4725 0.3170
collocated linear { 0.5065 0.3554
collocated LQ 0.4943 0.4530 0.4720 0.3165
collocated LQ 0.5341 0.4716
collocated NLQ 0.4430 0.3530 0.4660 0.3137
collocated NLQ t 0.5040 0.4447
staggered linear 0.9983 0.9983 0.4622 0.3296
staggered linear { 0.5065 0.3554
staggered NLQ 0.4802 0.4174 0.4588 0.3275
staggered NLQ 0.5033 0.4494
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TABLE II: Stencils for local models used in the a posteriori analysis. 1 Models with standard

terms only. * Models which diverged during simulation.

Stencil dimensions
model grid type flux

u v w
C2 i collocated all 1x1x2 - Ix1x2
C4 1 collocated all 1x1x4 - 1x1x4
Cés T * collocated all 1x1x6 - 1x1x6
Cws | * collocated all 3x3x4 - 3x3x4
Cén = collocated all 1x1x6 1x1x6 1x1x6
Cwn collocated all 3x3x4 3x3x4 3x3x4
My, Mayo. 1x1x2 - 2x1x1
S21 staggered Mo, Mowys ) ) Ix1x2
Myw, Mpys: 1x1x4 - 2x1x1
S41 staggered Moy Mow/ss i i 151x4
Muyw, Mpua: Ix1x6 - 2x1x1
S6st staggered Muno, Maujo, ) i Ix1x6
Myw, Mpy/o: 3x3x4 - 4x3%x3
Swst staggered Murw, Mouyos ) i 3% 3x4
Myw, May/a, 1x1x6 2x2%2 2x1x1
S6n staggered - My, Mo/ 2x1x1 1x2x1 1x1x6
Moy, Mpya. 3x3x4 4x4x4 4x3x%x3
Swn staggered Moy, Moo 4x3x3 3x4x3 3x3x4
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TABLE III: A-priori relative estimation variation for local estimates, with best global estimates

repeated for comparison.

Stencil Muyw My Mau/o- Mow o2
global collocated 0.4430 0.3530 0.4660 0.3137
global staggered 0.4802 0.4174 0.4588 0.3275

C2 0.5794 0.5369 0.5763 0.4636
C4 0.5185 0.4620 0.5160 0.3744
Cé6s 0.5134 0.4547 0.5089 0.3593
Cws 0.5120 0.4540 0.5137 0.3695
Cébn 0.5134 0.4518 0.5089 0.3593
Cwn 0.4590 0.3638 0.4998 0.3289
S2 0.5626 0.5369 0.5763 0.4636
S4 0.5626 0.4620 0.5160 0.3744
S6s 0.5626 0.4547 0.5089 0.3593
Sws 0.5099 0.4575 0.2638 0.3695
Sén 0.4976 0.4566 0.5137 0.3514
Swn 0.2476 0.4422 0.4847 0.3462
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TABLE IV: Coefficients for staggered finite-volume models, valid for Rey = 164

Standard
Coefficient second-order FV Optimal S2 Optimal S4
A vA~? 0.314267A~! 4 1.37142v A2 0.491708A~! + 1.93227vA~2
B - - — (0.0941649A~1 + 0.261150A~2)
C vA~? 0.130001A~1 + 1.24894vA~2  0.0963195A~1 + 2.08884v A2
D - - (0.0145042A71 — 0.196350A2)
E -6v A2 —(2A+40C) —(2(A+ B) + 4(C + D))
F 0.25 A1 0.387933 A1 0.679643 A~
G 0.5A"1 0.270394 A1 0.621382 A1
H - - 0.453439 A1
I -~ - 0.0917196 A~!
J 0.25 A1 0.268916 A1 0.268902 A1
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LIST OF CAPTIONS

Fig. 1 Stencils for 1x1x4 and 3x3x4 single velocity stencils are shown. The shaded
region identifies the face on which flux is computed. (a) 1x1x4 (b) 3x3x4

Fig. 2 Three-dimensional energy spectrum E(k), a -5/3 power law, and the Nyquist
wavenumber associated with the finite-volume filter width.

Fig. 3 Three-dimensional energy spectrum E(k), filtered DNS data compared with opti-
mal LES results. (a) Models C2, C4, S2, 54, S6s (b) Models Cwn, S6s, Sws, S6n, Swn

Fig. 4 Third-order structure function S3(r), filtered DNS data compared with optimal
LES results. (a) Models C2, C4, S2, 54, S6s (b) Models Cwn, S6s, Sws, S6n, Swn

Fig. 5 Three-dimensional energy spectrum E(k), filtered DNS data compared with opti-
mal LES and dynamic Smagorinsky results.

Fig. 6 Third-order structure function S3(r), filtered DNS data compared with optimal
LES and dynamic Smagorinsky results.

Fig. 7 Notation for a one-dimensional example problem. The state variables w are

averages of some underlying conserved quantity, whose flux across cell boundaries is denoted

by M.
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FIG. 1: Zandonade, Physics of Fluids.
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On the validity of quasi-normal approximation in
turbulent channel flow

Prakash Vedula and Robert D. Moser

University of Illinois,
Department of Theoretical and Applied Mechanics,
104 S. Wright Street, Urbana, IL 61801

Abstract

The validity of the quasi-normal approximation, which relates the fourth-order velocity
correlations to second-order velocity correlations, is tested using data obtained from direct
numerical simulation of turbulent channel flow at Re, = 590. Our validation study indicates
that the quasi-normal approximation is very accurate throughout the channel except for a
thin layer near the wall (y* < 50), where the approximation breaks down for small separa-
tions (r* < 150). This study shows that the quasi-normal approximation can be used as a
basis for development of LES models using the optimal LES formulation, in wall bounded

flows.

I. Introduction

Several phenomenological and statistical hypotheses have been postulated to enhance our
understanding of turbulent flows. One commonly used hypothesis is the Millionshchikov hy-
pothesis, which is also known as the quasi-normal approximation or zero-fourth-cuammulant
approximation. According to the quasi-normal approximation, the fourth-order velocity
cummulants are zero, which allows us to express the fourth-order velocity correlations in
terms of second-order velocity correlations (Monin & Yaglom').

The quasi-normal approximation has been used in a variety of contexts in the past.
These can be broadly categorized as (a) inference of turbulence statistics from kinematics
and phenomenology and (b) dynamical evolution of turbulence structure. In the former
category,v the quasi-normal approximation was used by Batchelor? to deduce the functional
behavior of pressure correlations in isotropic turbulence, Limber® to obtain the pressure-
velocity-velocity correlations and Hill & Wilczack? to comment on the scaling of pressure-
gradient and acceleration in homogeneous turbulence. In the latter category, the quasi-
normal approximation was used by Proudman & Reid® and Tatsumi® to derive dynamical
equations for third-order velocity correlations and Orszag’ in the development of analytical
closure theories (like eddy damped quasi-normal markovian closures).



An experimental justification of the quasi-normal approximation of fourth-order veloc-
ity correlations was first provided by Uberoi,? who noted the conformity of his results to
the quasi-normal approximation, except at the small scales where the approximation breaks
down. However, the use of quasi-normal approximation in category (b), was questioned
by Ogura® who noticed negative values in the energy spectrum after a finite time during
the dynamical evolution, a clear violation of realizability constraint. Kraichnan!® argued
that the use of quasi-normal approximation in the Proudman & Reid® approach was in-
consistent with the equations of motion and that the inconsistency results in a violation of
energy conservation. Orszag’ also noted the pitfalls of the quasi-normal approximation in
dynamical evolution equations and attributed the failures to the dynamical properties of the
quasi-normal approximation, which include an improper representation of relaxation effects
resulting in a violation of realizability. Further attempts to correct these shortcomings led
to the development of the eddy-damped quasi-normal Markovian type closures.

Most of the objections to the quasi-normal approximation are in the context of category
(b) usages. However, inspite of the experimental justification of quasi-normal approxima-
tion (Uberoi®), there have been some negatives in category (a) as well. It was noted in Hill
& Wilczack? and Hill & Thoroddsen,!! that the quasi-normal approximation (although a
good approximation at low Reynolds numbers) underestimates the pressure gradient or ac-
celeration correlation functions (and hence their variances). Since these correlations involve
integral relations over both small and large scales, one should attribute the underestimation
of these correlations to the failure of quasi-normal approximation at the small scales where
intermittency (non-Gaussian) effects are predominant. If one were to consider quasi-normal
approximation for physical quantities that do not depend on small scales (i.e. for separations
r >> 1) one can expect the approximation to be reasonable.

In this paper, we will examine the validity of this proposition in a turbulent channel flow
and quantify the errors due to the quasi-normal approximation using channel flow DNS data
at Re, ~ 590. The motivation for doing this arises in a different context than has been cited
in the literature. Our objective is to develop an optimal large eddy simulation (LES) model
to simulate high Reynolds number flow. Such a model involves stochastic estimation of the
convective acceleration (or momentum flux), which requires the knowledge of fourth-order
correlations as inputs. These can then be approximated in terms of second-order correlations
using the quasi-normal hypothesis. The channel flow was selected for this study to allow
evaluation of the approximation of the quasi-normal approximation in a wall bounded flow,
particularly in the log- or overlap region. The limits of applicability of the approximation
in nearly homogeneous flows are well understood as described above; these limits need to
be established for wall bounded flows, where models for near wall turbulence are one of the
primary challenges in LES modeling.

The formulation of the optimal LES approach, is based on the existence of an ideal LES
evolution. The large scales of turbulence to be simulated are defined through a spatial filter.
The choice of the spatial filter determines the (non-invertible) mapping of the infinite dimen-
sional state space of turbulent Navier-Stokes solutions to a finite-dimensional representation
of the large scale field. For any given spatial filter, the best deterministic estimate (in the
mean-square sense) of the evolution of the large scale field, is the ideal evolution (Adrian,?




Adrian et al.,® Langford & Moser!4) which is given by

dv  [dul|. .
(2= 1
dt <dtu w>’ (1)

where u represents the turbulent field, @ denotes the large scale LES field, and ~ denotes the
filtering operator. Such an evolution is guaranteed to produce the correct single-time, multi-
point statistics (Langford and Moser,'* Pope'®). Owing to the huge amount of statistical
information embedded in the above conditional average, it is difficult to obtain it directly
and hence it is formally approximated using the optimal LES approach, which is based on
stochastic estimation.1%16:13

Earlier, this approach was used for developing optimal sub-grid models in isotropic turbu-
lence (Langford & Moser'*) and turbulent channel flows (Volker et al.!”), based on spectral
filters. More recently, Langford!® and Zandonade et al.l® developed a finite-volume opti-
mal LES technique, wherein discretization and sub-grid effects are treated simultaneously.
Besides attempting to address the limitations (e.g. filter definition, treatment of numerical
discretization and near-wall modeling) of other LES models, the optimal LES models have
also led to very accurate simulations and have the potential of being applicable to the the
simulation of flows with complex geometries.

The optimal LES models require information regarding multi-point velocity correlations
as inputs. Although, these correlations can be obtained from DNS, it is necessary to eliminate
the need for DNS data, if optimal models are to be practically useful. We are thus led to
replace DNS statistical data with theory based models of the correlations. For instance,
among the inputs needed for optimal LES models are fourth-order velocity correlations,
which may be approximated using the quasi-normal hypothesis. The following sections of
this paper explore the validity of the quasi-normal approximation, within the context of
optimal LES modeling of wall-bounded turbulent flows.

II. Background

In the context of our optimal LES models, we need to determine an optimal quadratic
(stochastic) estimate of the convective acceleration (or flux), which requires the following
multi-point correlations (see Sec. 2.2.4 in Zandonade et al.’®) as inputs, for any linear filter:

(i) (x)), () (ue(x")) 5 () (Yue (") (x")) (2)

Note that the correlations in Sec. 2.2.4 in Zandonade et al.!® are actually averaged over cell
volumes/faces, since an optimal convective flux term (averaged over a cell-face) is estimated
in terms of volume averaged cell-velocities (up to quadratic term). The volume averaged
quantities/correlations appearing in Zandonade et al.® are a consequence of the filtering
operation inherent in the finite-volume formulation, where the filter width is related to the
grid spacing. Analogous to the finite-volume optimal LES formulation of Zandonade et
al.,"%one can also attempt to construct optimal LES models based purely on finite sampling
of the real velocity field (without the use of a conventional filter). Such models, which




represent the “finite-difference” analogue of finite-volume optimal LES, would also require
correlations given in (2), as inputs.

In order to reduce the information required as inputs (i.e. in (2)) for obtaining optimal
quadratic estimates, we use the quasi-normal hypothesis and express the fourth-order velocity
correlations in terms of second-order velocity correlations. The most general form of the
fourth-order velocity correlation is given by

Qi (%, %, X", x") = (wa(x)uy (X ue(x")u (x")) , (3)
which can be approximated using the quasi-normal hypothesis as,

Qi,j,k,l(x, X’, X”,X’") ~ Rij(x,xl)Rkl(x”)x”’) + R/ik(X,X”)Rﬂ(XI,XI”) + Ril(x, XI")Rjk(XI,X”),

(4)
where R;;(x,x') = (u;(x)u;(x)) denotes the two-point second-order correlation. Note that
the quasi-normal hypothesis states that the fourth order moments can be determined as if the
underlying probability distribution were Gaussian. However the quasi-normal approximation
makes no statement on the behavior of third-order moments or the underlying velocity
distribution.

To address the modeling issues of wall-bounded turbulent flows, we use fully developed
turbulent channel flow data at Re, =~ 590 (Moser et al.?’) as a test case to quantitatively val-
idate the quasi-normal hypothesis. The data was obtained from direct numerical simulation
using periodic boundary conditions in the the streamwise, (z) and spanwise, (z) directions,
while no slip conditions were used on the two parallel walls. A Fourier spectral represen-
tation was used in the streamwise and spanwise directions and a Chebyshev representation
was used in the wall-normal, (y) direction.

In order to completely test the quasi-normal approximation in the most general case, one
should compare the left and right hand sides of Eq. 4. However, this amounts to evaluating 81
components of the four-point fourth-order tensor at each point in 12-dimensional space. This
evaluation is not practical for inhomogeneous flows, inspite of the presence of symmetries.

Noting the statistical homogeneities in the streamwise and spanwise directions, we restrict
our attention to a class of two-point fourth order velocity correlations to make the study
tractable. This is a degenerate case of Eq. 3, given by

Qiju(%,X) = Qijra(%,%, %, %) = (wi(x)u; (¥)ur (x)w(x)) - (5)

Further, if the points x and x’ have the same wall-normal coordinate (i.e. lie in a plane
parallel to the walls), we have

Qijm (%, %) = Qij (0, % — %) = Qijpa(r), (6)

due to statistical homogeneity in the streamwise and spanwise directions, where r = x’' — x.

Henceforth, we will test the quasi-normal approximation of Q;;(r) for separation vectors r
parallel to the wall and (a) along the streamwise direction or (b) along the spanwise direction.

In order to quantify the error due to the quasi-normal approximation, we define an error

measure’, ¢ijri(r), as, NA
Gijpa(r) = Qij’kl(?(r_)Q ’ .

1¢:i ki(y™,r) may be a better definition




where QNA denotes the quasi-normal approximation of the two-point fourth-order velocity
correlation tensor, Q;;(r), according to Eq. (4) and L(r) = [Quju(r) Qij(r)]? is a con-
traction (summation convention assumed) or invariant of the two-point fourth-order velocity
correlation tensor.

The error measure, ¢;;x(r), as defined in Eq. (7), quantifies the error due to the quasi-
normal approximation, associated with each component of the two-point fourth-order veloc-
ity correlation tensor, Q;;(r). Another error measure which quantifies the error over all
the components of Q;;x(r), can be defined using the same contraction of @,grs(r) as

U(r) = [Bpgrs () Gpars (0] (8)

This error measure is also relevant to the linear algebra of the stochastic estimation proce-
dure. The relative error in the estimation coefficients due to the quasi-normal approximation
is bounded by the condition number of the linear system times ¥(r).

For separation vectors, normal to the wall, the fourth-order velocity correlations defined
in Eq. (5) are functions of two wall-normal coordinates, owing to lack of homogeneity in the
wall-normal direction. In this case, the fourth-order velocity correlations are given by,

Qij,lcl(x: X/) = Elj,kl(yy y'), (9)

where x = (2,9, 2) and X' = (z,¥,2). Similarly, as in Eq. (7) and Eq. (8), we can define
¢£§',kz (y,v') and ‘I!;Lj’kl(y, '), to quantify the errors associated with the quasi-normal approxi-
mation, for separation vectors perpendicular to the wall.

In the next section, the nature of these errors will be explored in the Re, ~ 590 channel
flow.

ITI. Results

The normalized error measure for wall normal velocity fluctuations, i.e. ¢2222(r), as a
function of the streamwise separation (in wall units) and distance from the wall (y*, along the
vertical coordinate) is shown in Figure la. The separation vectors, r, in this case are along
the streamwise direction. The behavior of the error as a function of the spanwise coordinate
is shown in Fig. 1b, which is similar to Fig. 1a, except that the separation vectors are chosen
along the spanwise direction. The errors are clearly small in these figures, indicating that the
quasi-normal approximation is very good for wall normal fluctuations with separations along
the spanwise coordinate. The normalized error for spanwise fluctuations (¢s33s(r)) is also
very small as shown in figure 2. Although, the data of Moser et al.?° indicate large values
of flatness factors of wall-normal (and spanwise) velocity fluctuations near the wall, which
significantly differ from the quasi-normal value, the error measure that is relevant for our
validation of the quasi-normal approximation for wall-normal (and spanwise) fluctuations
within the context of optimal LES is ¢g2 92(r).

The error measure ¢y; 11(r) for streamwise and spanwise separations (similar to Figs. la
and 1b) are shown in figures 3a and 3b respectively. The contour levels in Fig. 3a indicate
that the error is small everywhere except for regions near the wall (y* < 30) and for small
streamwise separations (Az* < 150), where the error is about 20% . A similar observation




can also be made from Fig. 3b, where the normalized error is small everywhere except in
the near-wall region (y* < 50) and for small spanwise separations (Az* < 100). The
deviation from quasi-normality in a region very near the wall should be expected from
the intermittent nature of the near wall flow. Although the quasi-normal approximation
breaks down for small streamwise and spanwise separations, our model inputs require fourth
correlations approximated by quasi-normal approximation only for streamwise separations
that are greater than those in the breakdown region. Typical channel flow optimal LES
simulations (Volker et al. 2002) would require correlations with separations of order Az* >
300 and Az* > 150.

To confirm the good accuracy of the quasi-normal approximation described above, a
number of other components of the fourth order correlation tensor were checked and found
to have small errors due to quasi-normality. Further, the overall error in the representation
of the fourth order correlation tensor as measured by ¥(r), is shown in figure 4. Note that
the contours of ¥ shown in figure 4 are similar to those for ¢11,11 in figure 3. Thus the
error in the quasi-normal approximation in this flow is dominated by the streamwise velocity
fluctuation (f11,11)- '

For separation vectors in the wall-normal direction, the errors ¢3; 0 (¥, %), ¢33,33(%,%"),

11.11(%,¥") and U(y,y') are shown in figure 5. With the exception of the region very near
the wall (y* < 40, y'* < 40 ), the errors are again very small and the overall error as
measured by ¥ (y,y') is dominated by the streamwise fluctuations (¢11,11)-

IV. Discussion

In this paper, we have used data obtained from direct numerical simulation of turbulent
channel flow at Re, = 590, to test the validity of the quasi-normal approximation of fourth-
order velocity correlations (see Eq. (4)). Unlike previous studies (mentioned in Sec. 1), our
motivation arises in the context of stochastic estimation of the convective acceleration (or
momentum flux) term, in order to develop optimal LES models.

The error due to the quasi-normal approximation, of a class of two-point fourth order
correlations, was quantified using a component-wise error measure ¢;;r(r) and an invari-
ant error measure U(r) for separation vectors in the streamwise, spanwise and wall-normal
directions. Our results indicate that the quasi-normal approximation provides an excellent
representation of the fourth-order correlation tensor, except in the region very near the
wall (y* < 50) where there are significant errors in the approximation for small separation
(r* < 150). In this region, the error in the representation is dominated by streamwise
velocity fluctuations.

Note that the error measures used here are appropriate for evaluating the representation
of the correlation tensor as a whole. Because the errors are normalized by a norm of the
tensor, small values of a component error measure (e.g. ¢2222) does not imply that the
related error in that individual component is necessarily small. For example, ¢23,02 is small
near the wall, but it is known that the flatness factor of the wall-normal fluctuation u,,
denoted by pa(u2) = (ud)/(u3)?, is far from the Gaussian value of 3 (according to the data of
Moser et al.?%). Thus (u3) is by itself not well represented by the quasi-normal approximation
of 3(u2) at the wall. The error measure, @27 is small in this case because near the wall
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fluctuations of uy are insignificant compared to those of u; (i.e. streamwise fluctuation),
since uy goes to zero like y? near the wall. Thus near the wall, u; fluctuations dominate the
norm of the fourth order correlation tensor. These error measures are relevant to our use
of the quasi-normal approximation to model statistical quantities for input to optimal LES.
The stochastic estimates performed in optimal LES use fourth order correlation components
(or their integrals) as elements of the right hand side vector in a linear algebraic equation
for the estimation kernels. In this context, the Ly norm of the error in the quasi-normal
approximation will be directly related to the Ly norm in the resulting estimation kernel,
which in turn is directly related to the error due to this approximation in the LES model.

The validity of quasi-normal approximation in wall bounded turbulence, except for a
very thin layer near the wall, provides one of several theoretical modeling tools that will
be required to make optimal LES a viable, practical modeling paradigm for wall bounded
turbulence.
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Figure la: Countours of normalized error, ¢22:(71), as a function of the streamwise sepa-
rations (along horizontal coordinate) and wall normal coordinate (vertical coordinate). The

axes are scaled by wall units.
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Figure 1b: Contours of ¢392(73). Same as Figure la, but for spanwise separations (along
horizontal coordinate)
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Figure 2: Same as figure la, but for the ¢3333(r1)
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Figure 3a: Same as figure la, but for ¢1311(r1), with separation vectors aligned along the
streamwise direction
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Figure 3b: Same as figure 1b, but for ¢;111(r3), with separation vectors aligned along the
spanwise direction
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Figure 4a: Contours of the invariant, ¥(r;), as a function of streamwise separations and
distance from the wall, as in figure la
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Figure 4b: Contours of the invariant, ¥(r3), as function of spanwise separations and distance
from the wall, as in figure 1b
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Figure 5c: Contours of qSlll,u(y, y') for separation vectors in the wall-normal direction
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Figure 5d: Contours of the invariant, U (y,y’) for separation vectors in the wall-normal
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